Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Ann Med ; 55(2): 2290213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38061697

RESUMEN

PURPOSE: This study examined the protective effects and mechanism of Lycium barbarum polysaccharides (LBP) in the context of intestinal barrier function and intestinal microbiota in mice with dextran sulfate sodium (DSS)-induced chronic ulcerative colitis (UC). METHODS: C57BL/6J male mice were assigned to a standard normal diet without DSS (control group), a normal diet with DSS (DSS group, 2% DSS given discontinuously for 3 weeks) or a normal diet supplemented with LBP (1% dry feed weight, LBP group, 2% DSS given discontinuously for 3 weeks) for a total of 8 weeks, at which point colonic tissues and caecal contents were collected. RESULTS: LBP exerted a significant effect against colitis by increasing body weight, colon length, DAI and histopathological scores. LBP inhibited proinflammatory cytokines (IL-1ß, IL-6, iNOS and TNF-α) expression, improved anti-inflammatory cytokine (IL-10) expression, promoted the expression of tight junction proteins (Occludin and ZO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2) activation and decreased Claudin-2 expression to maintain the intestinal mucosal barrier. In addition, the abundances of some probiotics (Ruminococcaceae, Lactobacillus, Butyricicoccus, and Akkermansia) were decreased with DSS treatment but increased obviously with LBP treatment. And LBP reduced the abundance of conditional pathogens associated with UC (Mucispirillum and Sutterella). Furthermore, LBP improved the production of short-chain fatty acids (SCFAs), including acetic acid, propionic acid, butyric acid and isobutyric acid. CONCLUSION: LBP can alleviate DSS-induced UC by regulating inflammatory cytokines and tight junction proteins. Moreover, LBP promotes probiotics, suppresses conditional pathogens and increases SCFAs production, showing a strong prebiotic effect.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Humanos , Masculino , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Funcion de la Barrera Intestinal , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Citocinas , Proteínas de Uniones Estrechas/metabolismo , Peso Corporal , Modelos Animales de Enfermedad
3.
EBioMedicine ; 95: 104739, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544202

RESUMEN

BACKGROUND: Dengue virus (DENV) infection during pregnancy increases the risk of adverse fetal outcomes, which has become a new clinical challenge. However, the underlying mechanism remains unknown. METHODS: The effect of DENV-2 infection on fetuses was investigated using pregnant interferon α/ß receptor-deficient (Ifnar1-/-) mice. The histopathological changes in the placentas were analyzed by morphological techniques. A mouse inflammation array was used to detect the cytokine and chemokine profiles in the serum and placenta. The infiltration characteristics of inflammatory cells in the placentas were evaluated by single-cell RNA sequencing. FINDINGS: Fetal growth restriction observed in DENV-2 infection was mainly caused by the destruction of the placental vasculature rather than direct damage from the virus in our mouse model. After infection, neutrophil infiltration into the placenta disrupts the expression profile of matrix metalloproteinases, which leads to placental dysvascularization and insufficiency. Notably, similar histopathological changes were observed in the placentas from DENV-infected puerperae. INTERPRETATION: Neutrophils play key roles in placental histopathological damage during DENV infection, which indicates that interfering with aberrant neutrophil infiltration into the placenta may be an important therapeutic target for adverse pregnancy outcomes in DENV infection. FUNDING: The National Key Research and Development Plans of China (2021YFC2300200-02 to J.A., 2019YFC0121905 to Q.Z.C.), the National Natural Science Foundation of China (NSFC) (U1902210 and 81972979 to J. A., 81902048 to Z. Y. S., and 82172266 to P.G.W.), and the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan, China (IDHT20190510 to J. A.).


Asunto(s)
Virus del Dengue , Placenta , Humanos , Ratones , Embarazo , Femenino , Animales , Placenta/metabolismo , Retardo del Crecimiento Fetal/etiología , Infiltración Neutrófila , Citocinas/metabolismo
4.
Mech Ageing Dev ; 210: 111760, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36476344

RESUMEN

The impairment of the intestinal epithelial barrier and subsequent bacterial translocation are common in aging individuals, contributory to several local and systematic disorders. However, the underlying mechanism of the age-related degeneration has not been fully understood. In this study, we demonstrated that the intestinal KIT signaling declined and de-activated with aging, parallel with epithelial barrier dysfunction. Endoplasmic reticulum stress (ERS)/unfolded protein response (UPR) was obviously increased during aging. The ERS and its downstream IRE1α were highly activated in the aging colonic epithelium. Furthermore, by the use of Tunicamycin (Tm)-induced ERS mouse and cell models, we uncovered that the activity of the ERS/IRE1α accelerated the protein degradation of KIT via ubiquitin-proteasome pathway. The deficiency of KIT signaling further reduced the transcription of the tight junction protein Claudin-3. Of significance, Artesunate (ART) could be capable of ameliorating the detrimental effect of ERS/IRE1α, indicated by the re-gained KIT and Claudin-3 expressions and the restoration of the intestinal epithelial barrier. In conclusion, our present study provided novel evidence elucidating the ERS/IRE1α-induced loss of KIT and Claudin-3 in the aging colonic epithelium and also shed light on the protective effect of Artesunate on the intestinal epithelial barrier by blocking ERS/IRE1α activity during aging.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Artesunato/farmacología , Estrés del Retículo Endoplásmico , Claudina-3/metabolismo , Respuesta de Proteína Desplegada , Apoptosis
5.
BMC Cancer ; 22(1): 1369, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585626

RESUMEN

BACKGROUND: Attenuated Oxaliplatin efficacy is a challenge in treating colorectal cancer (CRC) patients, contributory to the failure in chemotherapy and the risks in relapse and metastasis. However, the mechanism of Oxaliplatin de-efficacy during CRC treatment has not been completely elucidated. METHODS: Microarray screening, western blot and qPCR on clinic CRC samples were conducted to select the target gene ABCC10 transporter. The Cancer Genome Atlas data was analyzed to figure out the correlation between the clinical manifestation and ABCC10 expression. ABCC10 knock-down in CRC cells was conducted to identify its role in the Oxaliplatin resistance. Cell counting kit-8 assay was conducted to identify the CRC cell viability and Oxaliplatin IC50. Flow cytometry was conducted to detect the cell apoptosis exposed to Oxaliplatin. The intracellular Oxaliplatin accumulation was measured by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. RESULTS: CRC patients with higher ABCC10 were prone to relapse and metastasis. Differential ABCC10 expression in multiple CRC cell lines revealed a strong positive correlation between ABCC10 expression level and decreased Oxaliplatin response. In ABCC10 knock-down CRC cells the Oxaliplatin sensitivity was evidently elevated due to an increase of intracellular Oxaliplatin accumulation resulted from the diminished drug efflux. To explore a strategy to block ABCC10 in CRC cells, we paid a special interest in the endoplasmic reticulum stress (ERS) / unfolded protein response (UPR) that plays a dual role in tumor development. We found that neither the inhibition of ERS nor the induction of mild ERS had anti-CRC effect. However, the CRC cell viability was profoundly decreased and the pro-apoptotic factor CHOP and apoptosis were increased by the induction of intense ERS. Significantly, the Oxaliplatin sensitivity of CRC cells was enhanced in response to the intense ERS, which was blocked by inhibiting IRE1α branch of UPR. Finally, we figured out that the intense ERS down-regulated ABCC10 expression via regulated IRE1-dependent decay activity. CONCLUSION: Oxaliplatin was a substrate of ABCC10 efflux transporter. The intense ERS/IRE1α enhanced Oxaliplatin efficacy through down-regulating ABCC10 in addition to inducing CHOP. We suggested that introduction of intense ERS/UPR could be a promising strategy to restore chemo-sensitivity when used in combination with Oxaliplatin or other chemotherapeutic drugs pumped out by ABCC10.


Asunto(s)
Neoplasias Colorrectales , Proteínas Serina-Treonina Quinasas , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Recurrencia Local de Neoplasia , Apoptosis , Estrés del Retículo Endoplásmico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
6.
Front Cardiovasc Med ; 9: 781753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479278

RESUMEN

Cardiovascular diseases (CVD) are the leading cause of death worldwide, wherein myocardial infarction (MI) is the most dangerous one. Promoting angiogenesis is a prospective strategy to alleviate MI. Our previous study indicated that profilin 2 (PFN2) may be a novel target associated with angiogenesis. Further results showed higher levels of serum PFN2 and exosomal PFN2 in patients, mice, and pigs with MI. In this study, we explored whether PFN2 and endothelial cell (EC)-derived exosomal PFN2 could increase angiogenesis and be beneficial for the treatment of MI. Serum PFN2, exosomes, and exosomal PFN2 were elevated in rats with MI. PFN2 and exosomes from PFN2-overexpressing ECs (OE-exo) enhanced EC proliferation, migration, and tube formation ability. OE-exo also significantly increased the vessel number in zebrafish and protected the ECs from inflammatory injury. Moreover, OE-exo-treated mice with MI showed improvement in motor ability, ejection fraction, left ventricular shortening fraction, and left ventricular mass, as well as increased vessel numbers in the MI location, and decreased infarction volume. Mechanistically, PI3K might be the upstream regulator of PFN2, while ERK might be the downstream regulator in the PI3K-PFN2-ERK axis. Taken together, our findings demonstrate that PFN2 and exosomal PFN2 promote EC proliferation, migration, and tube formation through the PI3K-PFN2-ERK axis. Exosomal PFN2 may be a valuable target in the repair of MI injury via angiogenesis.

7.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35443040

RESUMEN

Target prediction and virtual screening are two powerful tools of computer-aided drug design. Target identification is of great significance for hit discovery, lead optimization, drug repurposing and elucidation of the mechanism. Virtual screening can improve the hit rate of drug screening to shorten the cycle of drug discovery and development. Therefore, target prediction and virtual screening are of great importance for developing highly effective drugs against COVID-19. Here we present D3AI-CoV, a platform for target prediction and virtual screening for the discovery of anti-COVID-19 drugs. The platform is composed of three newly developed deep learning-based models i.e., MultiDTI, MPNNs-CNN and MPNNs-CNN-R models. To compare the predictive performance of D3AI-CoV with other methods, an external test set, named Test-78, was prepared, which consists of 39 newly published independent active compounds and 39 inactive compounds from DrugBank. For target prediction, the areas under the receiver operating characteristic curves (AUCs) of MultiDTI and MPNNs-CNN models are 0.93 and 0.91, respectively, whereas the AUCs of the other reported approaches range from 0.51 to 0.74. For virtual screening, the hit rate of D3AI-CoV is also better than other methods. D3AI-CoV is available for free as a web application at http://www.d3pharma.com/D3Targets-2019-nCoV/D3AI-CoV/index.php, which can serve as a rapid online tool for predicting potential targets for active compounds and for identifying active molecules against a specific target protein for COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Aprendizaje Profundo , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
8.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35180781

RESUMEN

Although there are a large number of structural variations in the chromosomes of each individual, there is a lack of more accurate methods for identifying clinical pathogenic variants. Here, we proposed SVPath, a machine learning-based method to predict the pathogenicity of deletions, insertions and duplications structural variations that occur in exons. We constructed three types of annotation features for each structural variation event in the ClinVar database. First, we treated complex structural variations as multiple consecutive single nucleotide polymorphisms events, and annotated them with correlation scores based on single nucleic acid substitutions, such as the impact on protein function. Second, we determined which genes the variation occurred in, and constructed gene-based annotation features for each structural variation. Third, we also calculated related features based on the transcriptome, such as histone signal, the overlap ratio of variation and genomic element definitions, etc. Finally, we employed a gradient boosting decision tree machine learning method, and used the deletions, insertions and duplications in the ClinVar database to train a structural variation pathogenicity prediction model SVPath. These structural variations are clearly indicated as pathogenic or benign. Experimental results show that our SVPath has achieved excellent predictive performance and outperforms existing state-of-the-art tools. SVPath is very promising in evaluating the clinical pathogenicity of structural variants. SVPath can be used in clinical research to predict the clinical significance of unknown pathogenicity and new structural variation, so as to explore the relationship between diseases and structural variations in a computational way.


Asunto(s)
Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Exones , Humanos , Anotación de Secuencia Molecular , Virulencia
9.
J Virol ; 96(2): e0118921, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730391

RESUMEN

Zika virus (ZIKV) belongs to mosquito-borne flaviviruses. Unlike other members in the family, ZIKV can be sexually transmitted, and the female genital tracts are susceptible to ZIKV. However, the impact of ZIKV infection on nonpregnant female reproductive health is not understood. In this study, we investigated the effects of ZIKV infection on the ovary by using nonpregnant female interferon α/ß receptor-deficient (Ifnar1-/-) mice. The results showed that the ovary supported ZIKV replication, and the granulosa and theca cells of antral follicles were susceptible. ZIKV replication in situ significantly reduced the numbers of antral follicles, aggravated follicular atresia, and disrupted folliculogenesis. Notably, ZIKV replication in the ovary caused disordered ovarian steroidogenesis manifested by decreased expression of key enzymes linked to sex hormone synthesis, including the cytochrome P450 17A1 (CYP17A1) and aromatase (CYP19A1). Further, we observed that ZIKV infection disrupted the estrous cycle and thus prolonged the time to conceive. More importantly, although ZIKV RNA could not be detected at 3 months postinfection, damaged ovarian structure and dysfunction were also observed. Taken together, our study demonstrates that ZIKV infection in nonpregnant female mice cause ovarian damage and dysfunction, even long after ZIKV clearance. These data provide important information to understand the effects of ZIKV infection in female reproductive tissues and basic evidence for further studies. IMPORTANCE Zika virus (ZIKV), a flavivirus, is primarily transmitted by mosquito bites. But it can also be transmitted vertically and sexually. Although ZIKV-associated Guillain-Barré syndrome and microcephaly have drawn great attention, there have been few studies on the potential effects of ZIKV on the genital tract of nonpregnant females. This study investigated the effects of ZIKV on the ovaries in mice. We found that ZIKV replicated in the ovary and the granulosa and theca cells of antral follicles were susceptible. ZIKV replication in situ significantly damaged ovarian structure and function and disrupted folliculogenesis. Notably, ZIKV infection further disrupted the estrous cycle and prolonged the time to conceive in mice by causing disordered ovarian steroidogenesis. These effects were observed in both the acute phase and the recovery phase after viral elimination. Overall, the new findings provide important additions to make out the potential adverse impacts of ZIKV on reproductive health in females.


Asunto(s)
Fertilización , Ovario/virología , Progesterona/sangre , Virus Zika/patogenicidad , Animales , Modelos Animales de Enfermedad , Ciclo Estral , Femenino , Atresia Folicular , Ratones , Ovario/patología , Ovario/fisiopatología , Receptor de Interferón alfa y beta/deficiencia , Especificidad de la Especie , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/sangre , Infección por el Virus Zika/virología
10.
J Crohns Colitis ; 16(4): 656-667, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34628497

RESUMEN

BACKGROUND AND AIMS: Disruption of the intestinal barrier of the digestive tract is a common pathophysiological change in the elderly, which may partly contribute to gut dysfunction and inflammatory bowel disease [IBD]. This study aimed to discover new interactive epigenetic regulation patterns involved in intestinal barrier dysfunction and colitis in elderly populations. METHODS: Intestinal barrier function and structure were evaluated in naturally ageing mice and elderly people. High-throughput analysis was performed on colonic tissues from humans and mice. The synergistic roles of miR-1-3p and miR-124-3p were identified using microRNA mimic/agomirs. Related genes were examined in biopsies of old IBD patients. RESULTS: A defective mucus barrier was observed before mucosal microstructural damage during ageing. Elevated miR-1-3p expression in the colons of older individuals impaired the mucus barrier by directly targeting T-synthase, similarly to the mechanism of miR-124-3p, which we reported previously. Importantly, the synergistic effect of a half dose of each microRNA supplement on T-synthase and CDK4/6 was stronger than that of a full dose of miR-1-3p or miR-124-3p alone, and mice co-treated with two microRNAs showed greater susceptibility to chemical-induced colitis than mice treated with either microRNA alone. These two microRNAs were up-expressed in old IBD patients. CONCLUSIONS: The slight increases in miR-1-3p and miR-124-3p expression with ageing may be important contributors to the breakdown of intestinal homeostasis by targeting divergent genes in different cells. These data reveal the potential ability of multiple microRNAs to exert synergistic effects to damage the intestinal barrier and promote inflammatory bowel disease development in elderly populations.


Asunto(s)
Envejecimiento , Colitis , Enfermedades Inflamatorias del Intestino , MicroARNs , Anciano , Envejecimiento/genética , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Epigénesis Genética , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo
11.
Exp Cell Res ; 408(2): 112862, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626585

RESUMEN

Macrophage receptor with collagenous structure (MARCO) is a member of the class A scavenger receptor family which is expressed on the cell surface of macrophages. It is well known that MARCO avidly binds to unopsonized pathogens, leading to its ingestion by macrophages. However, the role of MARCO in the recognition and phagocytosis of tumor cells by macrophages remains poorly understood. In this study, we used lentiviral technology to knockdown and overexpress MARCO and investigated the ability of macrophages to phagocytose tumor cells. Our results showed that MARCO expression was correlated with the ability of macrophages to carry on phagocytosis. MARCO knockdown led to significant decreases in the number of engulfment pseudopodia of macrophages and inhibition of the phagocytosis of tumor cells. On the other hand, MARCO overexpression elevated activity of SYK, PI3K and Rac1 in macrophages, which led to changes in macrophage morphology and enhanced phagocytosis by promoting formation of stress fibers and pseudopodia. By Co-IP analysis we showed that MARCO directly binds to the ß5 integrin of SL4 tumor cells. In summary, these results demonstrated the important role for MARCO in demonstrated tumor cells uptake and clearance by macrophages.


Asunto(s)
Cadenas beta de Integrinas/genética , Neoplasias/genética , Fagocitosis/genética , Receptores Inmunológicos/genética , Receptores Depuradores/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Quinasa Syk/genética , Proteína de Unión al GTP rac1/genética
12.
Bioinformatics ; 37(23): 4485-4492, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34180970

RESUMEN

MOTIVATION: Predicting new drug-target interactions is an important step in new drug development, understanding of its side effects and drug repositioning. Heterogeneous data sources can provide comprehensive information and different perspectives for drug-target interaction prediction. Thus, there have been many calculation methods relying on heterogeneous networks. Most of them use graph-related algorithms to characterize nodes in heterogeneous networks for predicting new drug-target interactions (DTI). However, these methods can only make predictions in known heterogeneous network datasets, and cannot support the prediction of new chemical entities outside the heterogeneous network, which hinder further drug discovery and development. RESULTS: To solve this problem, we proposed a multi-modal DTI prediction model named 'MultiDTI' which uses our proposed joint learning framework based on heterogeneous networks. It combines the interaction or association information of the heterogeneous network and the drug/target sequence information, and maps the drugs, targets, side effects and disease nodes in the heterogeneous network into a common space. In this way, 'MultiDTI' can map the new chemical entity to this learned common space based on the chemical structure of the new entity. That is, bridging the gap between new chemical entities and known heterogeneous network. Our model has strong predictive performance, and the area under the receiver operating characteristic curve of the model is 0.961 and the area under the precision recall curve is 0.947 with 10-fold cross validation. In addition, some predicted new DTIs have been confirmed by ChEMBL database. Our results indicate that 'MultiDTI' is a powerful and practical tool for predicting new DTI, which can promote the development of drug discovery or drug repositioning. AVAILABILITY AND IMPLEMENTATION: Python codes and dataset are available at https://github.com/Deshan-Zhou/MultiDTI/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Desarrollo de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Reposicionamiento de Medicamentos , Algoritmos , Descubrimiento de Drogas
13.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1290-1298, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34081583

RESUMEN

An outbreak of COVID-19 that began in late 2019 was caused by a novel coronavirus(SARS-CoV-2). It has become a global pandemic. As of June 9, 2020, it has infected nearly 7 million people and killed more than 400,000, but there is no specific drug. Therefore, there is an urgent need to find or develop more drugs to suppress the virus. Here, we propose a new nonlinear end-to-end model called LUNAR. It uses graph convolutional neural networks to automatically learn the neighborhood information of complex heterogeneous relational networks and combines the attention mechanism to reflect the importance of the sum of different types of neighborhood information to obtain the representation characteristics of each node. Finally, through the topology reconstruction process, the feature representations of drugs and targets are forcibly extracted to match the observed network as much as possible. Through this reconstruction process, we obtain the strength of the relationship between different nodes and predict drug candidates that may affect the treatment of COVID-19 based on the known targets of COVID-19. These selected candidate drugs can be used as a reference for experimental scientists and accelerate the speed of drug development. LUNAR can well integrate various topological structure information in heterogeneous networks, and skillfully combine attention mechanisms to reflect the importance of neighborhood information of different types of nodes, improving the interpretability of the model. The area under the curve(AUC) of the model is 0.949 and the accurate recall curve (AUPR) is 0.866 using 10-fold cross-validation. These two performance indexes show that the model has superior predictive performance. Besides, some of the drugs screened out by our model have appeared in some clinical studies to further illustrate the effectiveness of the model.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Evaluación Preclínica de Medicamentos/métodos , Redes Neurales de la Computación , SARS-CoV-2/efectos de los fármacos , COVID-19/epidemiología , Biología Computacional , Bases de Datos Farmacéuticas/estadística & datos numéricos , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/estadística & datos numéricos , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Reposicionamiento de Medicamentos/métodos , Reposicionamiento de Medicamentos/estadística & datos numéricos , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Dinámicas no Lineales , Pandemias
14.
Cancer Sci ; 112(2): 655-667, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33247506

RESUMEN

Carcinoembryonic antigen (CEA) is highly expressed in embryo and colorectal cancer (CRC) and has been widely used as a marker for CRC. Emerging evidence has demonstrated that elevated CEA levels promote CRC progression. However, the mechanism of the increased CEA expression in patients with primary and recurrent CRC is still an open question. In this study, we showed that c-KIT, ELK1, and CEA were hyperexpressed in patients with CRC, especially patients with recurrent disease. From bioinformatics analysis, we picked ELK1 as a candidate transcription factor (TF) for CEA; the binding site of ELK1 within the CEA promoter was confirmed by chromatin immunoprecipitation and dual luciferase reporter assays. Overexpression of ELK1 increased CEA expression in vitro, while knockdown of ELK1 decreased CEA. Upregulated ELK1 promoted the adhesion, migration, and invasion of CRC cells, however knockdown of CEA blocked the activities of ELK1-overexpressed CRC cells. Furthermore, we explored the role of c-KIT-ERK1/2 signaling in activation of ELK1. Blocking c-KIT signaling using Imatinib or ISCK03 reduced p-ELK1 expression and consequently decreased CEA levels in CRC cells, as did blocking the ERK1/2 pathway by U0126. Compared with wild type littermates, the c-kit loss-of-functional Wadsm/m mice showed lowered c-KIT, ELK1, and CEA expression. In conclusion, our study revealed that ELK1, which was activated by c-KIT-ERK1/2 signaling, was a key TF for CEA expression. Blocking ELK1 or its upstream signaling could be an alternative way to decelerate CRC progression. Besides being a biomarker for CRC, CEA could be used for guiding targeted therapy.


Asunto(s)
Antígeno Carcinoembrionario/metabolismo , Neoplasias Colorrectales/patología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Animales , Neoplasias Colorrectales/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Regulación hacia Arriba
15.
Transl Res Anat ; 24: 100115, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38620760

RESUMEN

Backgroud: Under the circumstance of school closures caused by the coronavirus outbreak, medical schools in China began implementing online teaching, including histology and embryology (HE) beginning in the middle of February 2020. The changes in HE education in responding to the pandemic in China needs to be determined, for further adaption of online teaching delivery or blended learning. Methods: A nationwide survey of the major medical colleges was conducted via WeChat. Results: In total, 83 medical schools (one respondent per school) were invited to survey, 78 medical schools responded which represented most medical schools across all the provinces in mainland China, as well as Hong Kong and Macao. The results revealed that 77% (n = 60) and 58% (n = 45) of the responding schools had conducted HE theoretical and practical online teaching, respectively, prior to the pandemic; however, 27% (n = 21) of the medical schools had temporally suspended practical sessions at the time the survey was completed. During the pandemic, 73% (n = 57) and 29% (n = 23) of the medical schools delivered HE theoretical and practical sessions by synchronous live broadcasting, respectively; 65% (n = 51) of the medical schools increased virtual microscopy using during practical sessions. During the pandemic, 54% (n = 42) of the medical schools implemented teaching activities promoting active learning; meanwhile, online assessment was implemented in 84% (n = 66) of the responding medical schools. With regard to the satisfaction with the effectiveness of online teaching during the pandemic, 64% (n = 50) of the medical schools gave positive answers and considered that it was a good opportunity to develop novel and diversified teaching methods. Despite various difficulties such as work overload and unstable online teaching environments, most medical schools are willing to continue or increase theoretical online teaching after the pandemic. Conclusions: Medical institutes in China were the earliest of closing campuses and having complete online teaching experience during the pandemic. This paper presents overall HE teaching situation extracted from the survey, to assist other medical schools optimizing the transitions to quality online teaching within a short time, and to serve as reference for schools that demand essential knowledge in online teaching methods, infrastructure construction, and platform integrations.

16.
Aging Cell ; 19(11): e13252, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33040455

RESUMEN

The risk of colitis and colorectal cancer increases markedly throughout adult life, endangering the health and lives of elderly individuals. Previous studies have proposed that bacterial translocation and infection are the main risk factors for these diseases. Therefore, in the present study, we aimed to identify the underlying mechanism by focusing on the mucus barrier function and mucin-type O-glycosylation. We evaluated alterations in the colon mucus layer in 2-, 16-, and 24-month-old mice and aged humans. Aged colons showed defective intestinal mucosal barrier and changed mucus properties. The miR-124-3p expression level was significantly increased in the aged distal colonic mucosa, which was accompanied by an increase in pathogens and bacterial translocation. Meanwhile, T-synthase, the rate-limiting enzyme in O-glycosylation, displayed an age-related decline in protein expression. Further experiments indicated that miR-124-3p modulated O-glycosylation by directly targeting T-synthase. Moreover, young mice overexpressing miR-124-3p exhibited abnormal glycosylation, early-onset, and more severe colitis. These data suggest that miR-124-3p predisposes to senile colitis by reducing T-synthase, and the miR-124-3p/T-synthase/O-glycans axis plays an essential role in maintaining the physiochemical properties of colonic mucus and intestinal homeostasis.


Asunto(s)
Colitis/metabolismo , Galactosiltransferasas/metabolismo , MicroARNs/metabolismo , Moco/metabolismo , Factores de Edad , Colitis/genética , Colitis/patología , Colon/patología , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino
17.
J Tissue Eng Regen Med ; 14(11): 1618-1629, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32870569

RESUMEN

Mesenchymal stem cells (MSCs) are considered a promising candidate for use in cell-based therapy for cartilage repair. To promote understanding of the molecular control of chondrogenesis differentiation in MSCs, we compared the changes in microRNAs during in vitro chondrogenesis process of human bone-marrow mesenchymal stem cells (hBMSCs). MiR-199b-5p was up-regulated significantly during this process. The aim of the study was to investigate the effects of miR-199b-5p on chondrogenic differentiation of C3H10T1/2 MSC cells and explore the underlying mechanisms. MiR-199b-5p mimics or inhibitor were transfected into C3H10T1/2 cells, respectively, and then, the effects of miR-199b-5p on chondrogenic differentiation of C3H10T1/2 cells were detected. The results indicated that miR-199b-5p overexpression inhibited the growth of C3H10T1/2 cells but promoted transforming growth factor-ß3 (TGF-ß3)-induced C3H10T1/2 cells of chondrogenic differentiation, as supported by enhancing the gene and protein expression of chondrocyte specific markers of SOX9, aggrecan, and collagen type II (Col2a1). In contrast, inhibiting miR-199b-5p notably promoted the proliferation of C3H10T1/2 cells but decreased chondrogenic differentiation. Furthermore, mechanism studies revealed that JAG1 was a direct target of miR-199b-5p by dual luciferase reporter assays. While silencing of JAG1 by isRNA resulted an increase of chondrogenic differentiation. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. In conclusion, the present study revealed for the first time that miR-199b-5p was the positive regulators to modulate chondrogenic differentiation of C3H10T1/2 cells by targeting JAG1. These findings may provide a novel insight on miRNA-mediated MSC therapy for cartilage related disorders.


Asunto(s)
Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Proteína Jagged-1/metabolismo , MicroARNs/metabolismo , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/genética , Células Cultivadas , Condrogénesis/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Persona de Mediana Edad , Receptores Notch/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta3/metabolismo , Regulación hacia Arriba/genética
18.
Histol Histopathol ; 34(2): 191-200, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30211433

RESUMEN

The alteration of intestinal mucosal barrier is considered to be the central pathophysiological process in response to gastrointestinal infections, and mucosal microstructural damage is a major factor for enhancing epithelial permeability in persistent bacterial infections. However, the mechanism involved in hyperpermeability in the early stage of acute bacterial infections is not fully understood. In the present study, fluorescein isothiocyanate-dextran across and transepithelial resistance measured in Ussing chambers were used to assess the intestinal paracellular permeability. Mast cell activation was evaluated by western blotting for the presence of tryptase released from mast cells. Serum levels of interleukin-6 were evaluated using enzyme-linked immunosorbent assay. Our results indicated that mast cells played a pivotal role in colonic mucosal hyperpermeability in wild type mice treated with lipopolysaccharide (LPS) for 2 h. And the effect of LPS was mainly dependent on mast cell degranulation, while no change in permeability was observed in the mast cell-deficient mice (Wads⁻/⁻) after LPS administration. No obvious changes of the mucosal structure including histomorphological architecture and expression of intercellular junction proteins were obtained in either wild type or Wads⁻/⁻ mice after LPS stimulation by hematoxylin and eosin staining, immunofluorescence staining and western blot analysis. Furthermore, the self-renewal of intestinal epithelia, detected by using proliferation marker 5'-bromo-2'-deoxyuridine, was not involved in increased permeability. Collectively, activation of mast cells induced by LPS mediated intestinal hyperpermeability in the initial stage, and played a crucial role in barrier dysfunction rather than mucosal microstructural damage in acute enterogenous bacterial infection.


Asunto(s)
Uniones Intercelulares/efectos de los fármacos , Mucosa Intestinal/metabolismo , Lipopolisacáridos/toxicidad , Mastocitos/inmunología , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/inmunología , Colon , Modelos Animales de Enfermedad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL , Permeabilidad
19.
Aging (Albany NY) ; 10(12): 3851-3865, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30530917

RESUMEN

Aging is a significant risk factor for gastrointestinal dysmotility, but aging-associated differences between different organs and the exact time to start degenerating have remained obscure. Here we evaluated alterations of interstitial cells of Cajal, enteric neurons and connexin43 expression in the stomach, jejunum and colon in 2-, 12-, 16-, 20- and 24-month-old mice, as well as in aged human colon. Interstitial cells of Cajal, cholinergic and nitrergic neurons within the whole digestive tract were reduced over time, but their loss first appeared in stomach, then in intestine, helping to understand that gastric function was first impaired during aging. The decrease of connexin43 expression occurred before interstitial cells of Cajal and neurons loss, suggesting that connexin43 might be the major target influenced during senescence. Furthermore, changes in expressions of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin-1ß, interleukin-6) and apoptosis-related proteins (B-cell lymphoma-2, caspase-3) which indicated "inflammaging", might contribute to the loss of enteric neurons and interstitial cells of Cajal in aged gastrointestinal tract. Our results provide possible therapeutic time window for beneficial intervention for geriatric patients with gastrointestinal motility disorders.


Asunto(s)
Envejecimiento/fisiología , Conexina 43/metabolismo , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/inervación , Células Intersticiales de Cajal/fisiología , Animales , Conexina 43/genética , Citocinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología
20.
Am J Cancer Res ; 8(6): 1064-1073, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034943

RESUMEN

Mucinous colorectal adenocarcinoma (MCA) is characterized by a great mount of extracellular mucus fundamentally composed of Mucin2 (MUC2) which is significantly correlated with the high malignancy and strong invasive ability of MCA. However, rare is known about the underlying mechanism of the mucus accumulation in MCA. Our latest study demonstrated that SCF/c-KIT signaling was highly activated in MCA patients and mouse model, which up-regulated MUC2 transcription. In the present study, we paid a special interest in whether and how SCF/c-KIT signaling promoted mucus secretion by using wild-type (WT) C57BL mice and their littermates who harbor mutational c-kit gene (Wadsm/m), clinical colorectal cancer (CRC) samples, as well as human CRC cell lines. Our results clearly showed that the inner mucus layer of colon was thinner and the intracellular mucin residual was more in Wadsm/m mice than those in WT mice by Alcian blue and PAS staining, suggesting that the mucus secretion process was crippled when SCF/c-KIT signaling was hypo-activated. Inhibiting SCF/c-KIT signaling by Imatinib also resulted in weakened mucus secretion in WT mice. Intraperitoneal administration of MANS which competitively inhibits the activity of the vesicular transport protein MARCKS efficiently reduced mucus secretion in colonic goblet cells of WT mice. Significantly, phosphorylated MARCKS (p-MARCKS) was overtly decreased in colonic mucosa of Wadsm/m mice compared with WT mice, indicating that SCF/c-KIT signaling-regulated mucus secretion was probably mediated by MARCKS activation. Similar results were obtained in MCA patients and mouse model. Moreover, SCF/c-KIT signaling was activated or inhibited in HT-29 and LS174T CRC cells, which potently increased or decreased MARCKS activity, respectively. Finally, we found that PKCδ, a known kinase for MARCKS, was activated in WT and MCA mice along with MARCKS. Inhibition or activation of SCF/c-KIT signaling resulted in decreased or increased PKCδ activity respectively in vitro. In conclusion, we demonstrated that SCF/c-KIT signaling can promote the mucus secretion by activating PKCδ-MARCKS, which provided a new insight into understanding the mechanism of mucus secretion of goblet cells and MCA development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA