Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
ACS Sens ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864828

RESUMEN

A new type of carbonized polymer dot was prepared by the one-step hydrothermal method of triethoxylsilane (TEOS) and citric acid (CA). The sensor made from carbonized polymer dots (CPDs) showed superior gas sensing performance toward ammonia at room temperature. The Si, O-codoped CPDs exhibited superior ammonia sensing performance at room temperature, including a low practical limit of detection (pLOD) of 1 ppm (Ra/Rg: 1.10, 1 ppm), short response/recovery time (30/36 s, 1 ppm), high humidity resistance (less than 5% undulation when changing relative humidity to 80 from 30%), high stability (less than 5% initial response undulation after 120 days), reliable repeatability, and high selectivity against other interferential gases. The gas sensing mechanism was investigated through control experiments and in situ FTIR, indicating that Si, O-codoping essentially improves the electron transfer capability of CPDs and synergistically dominates the superior ammonia sensing properties of the CPDs. This work presents a facile strategy for constructing novel high-performance, single-component carbonized polymer dots for gas sensing.

2.
Adv Sci (Weinh) ; : e2403870, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899831

RESUMEN

Guided nanowires grown on polymer surfaces facilitate their seamless integration as flexible devices without post-growth processing steps. However, this is challenging due to the inability of polymer films to provide the required lattice-matching effect. In this work, this challenge is addressed by replicating highly aligned nanogrooves from a compact disc (CD) onto a casted flexible polydimethylsiloxane (PDMS) surface. Leveraging the replicated nanogrooves, copper hexadecafluorophthalocyanine (F16CuPc) and various metal phthalocyanines are guided into large-area, self-aligned nanowires. Subsequently, by employing specifically designed shadow masks during electrode deposition, these nanowires are seamlessly integrated as either a monolithic flexible photodetector with a large sensing area or on-chip flexible photodetector arrays. The resulting flexible photodetectors exhibit millisecond and long-term stable response to UV-vis-NIR light. Notably, they demonstrate exceptional bending stability, retaining stable and sensitive photoresponse even at a curvature radius as low as 0.5 cm and after enduring 1000 bending cycles. Furthermore, the photodetector array showcases consistent sensitivity and response speed across the entire array. This work not only proves the viability of guided nanowire growth on flexible polymer surfaces by replicating CD nanogrooves but also underscores the potential for large-scale monolithic integration of guided nanowires as flexible devices.

3.
J Am Chem Soc ; 146(20): 13894-13902, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728606

RESUMEN

Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.

5.
Nano Lett ; 24(22): 6568-6575, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787693

RESUMEN

Zero-dimensional metal halides have received wide attention due to their structural diversity, strong quantum confinement, and associated excellent photoluminescence properties. A reversible and tunable luminescence would be desirable for applications such as anti-counterfeiting, information encryption, and artificial intelligence. Yet, these materials are underexplored, with little known about their luminescence tuning mechanisms. Here we report a pyramidal coplanar dimer, (TBA)Sb2Cl7 (TBA = tetrabutylammonium), showing broadband emission wavelength tuning (585-650 nm) by simple thermal treatment. We attribute the broad color change to structural disorder induced by varying the heat treatment temperatures. Increasing the heating temperature transitions the material from long-range ordered crystalline phase to highly disordered glassy phase. The latter exhibits stronger electron-phonon coupling, enhancing the self-trapped exciton emission efficiency. The work provides a new material platform for manifold optical anti-counterfeiting applications and sheds light on the emission color tuning mechanisms for further design of stimuli-responsive materials.

6.
Nat Sci Sleep ; 16: 335-344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567117

RESUMEN

Purpose: To explore whether sleep electroencephalogram (EEG) microarousals of different standard durations predict daytime mood and attention performance in healthy individuals after mild sleep restriction. Participants and Methods: Sixteen (nine female) healthy college students were recruited to examine the correlations between nocturnal EEG microarousals of different standard durations (≥3 s, ≥5 s, ≥7 s, ≥9 s) under mild sleep restriction (1.5 h) and the following morning's subjective alertness, mood, sustained attention, and selective attention task performance. Results: Results revealed that mild sleep restriction significantly reduced subjective alertness and positive mood, while having no significant effect on negative mood, sustained attention and selective attention performance. The number of microarousals (≥5 s) was negatively associated with positive mood at 6:30. The number of microarousals was significantly and positively correlated with the response time difference value of disengagement component of the selective attention task at around 7:30 (≥5 s and ≥7 s) and 9:00 (≥5 s). The number of microarousals (≥7 s) was significantly and positively correlated with the inaccuracy difference value of orientation component of the selective attention task at around 9:00. Conclusion: The number of EEG microarousals during sleep in healthy adults with mild sleep restriction was significantly and negatively related to their daytime positive affect while positively associated with the deterioration of disengagement and orientation of selective attention performance, but this link is dependent on the standard duration of microarousals, test time and the type of task.

7.
Mater Horiz ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666445

RESUMEN

We create high-aspect-ratio dynamic poly-regional surface topographies in a coating of a main-chain liquid crystal oligomer network (LCON). The topographies form at the topological defects in the director pattern organized in an array which are controlled by photopatterning of the alignment layer. The defect regions are activated by heat and/or light irradiation to form reversible topographic structures. Intrinsically, the LCON is rubbery and sensitive to temperature changes, resulting in shape transformations. We further advanced such system to make it light-responsive by incorporating azobenzene moieties. Actuation reduces the molecular order of the LCON coating that remains firmly adhered to the substrate which gives directional shear stresses around the topological defects. The stresses relax by deforming the surfaces by forming elevations or indents, depending on the type of defects. The formed topographies exhibit various features, including two types of protrusions, ridges and valleys. These poly-regional structures exhibit a large modulation amplitude of close to 60%, which is 6 times larger than the ones formed in liquid crystal networks (LCNs). After cooling or by blue light irradiation, the topographies are erased to the initial flat surface. A finite element method (FEM) model is adopted to simulate structures of surface topographies. These dynamic surface topographies with multilevel textures and large amplitude expand the application range, from haptics, controlled cell growth, to intelligent surfaces with adjustable adhesion and tribology.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38679867

RESUMEN

Ion channels play a crucial role in the transmembrane transport and signal transmission of substances. In animals, transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) serve as temperature-sensing units in sensory nerve endings. TRPV1 allows cells to sense heat, while TRPM8 enables them to detect cold, both serving to protect living organisms from harmful substances and environments. However, almost all studies on artificial nanochannels have mainly focused on TRPV1-like "forward nanochannels" thus far, which are incapable of "backward" responding to heat. So, we constructed an innovational TRPM8-inspired "retrorse nanochannel" through internal modification of poly(acrylamide-co-acrylonitrile) [P(AAm-co-AN)] with an upper critical solution temperature (UCST). Our results demonstrated that the internally modified nanochannels exhibited rapid, stable, and reversible heat-closing capability and converse temperature dependence within the typical temperature range of 25-40 °C. The biomimetic ion channel can effectively function as a facile, precise, and reversible thermal gate for controlling the transport of ions and substances. It also offers a promising microscopic technology for managing thermal effects on the substance, fluid, energy, and even signal delivery.

9.
Macromol Biosci ; : e2400033, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642330

RESUMEN

As the core index, how to improve bioavailability of loaded cargoes is a hot topic of drug carriers. In this study, aminated ß-cyclodextrin (ß-CD) as a cross-linking points is first integrated into 3D poly(acrylamide-co-acrylonitrile) (P(AAm-co-AN)) network to build up a unique submicrocage (466.2 ± 47.6 nm), featuring upper critical solution temperature (UCST; ≈40 °C), high volume expansion coefficient, and excellent biocompatibility. Hereinto, hydrophobic ß-elemene (ELE) is locally loaded in ß-CD with high loading efficiency (8.72%) and encapsulation efficiency (78.60%) through hydrophobic desolvation and host-guest interaction. Above UCST, the release of the loaded ELE is accelerated to 72.87% in 24 h, together with the enhanced sensitization effect of synergized radiotherapy. Given spontaneous long-lasting delivery, targeted embolization, and post-treatment removal of such UCST-type submicrocage, it is anticipated to provide a novel, facile, efficient, and versatile strategy of comprehensive anticancer treatments for high drug bioavailability.

10.
Adv Mater ; 36(25): e2400347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573812

RESUMEN

Suppressing trap-assisted nonradiative losses through passivators is a prerequisite for efficient perovskite light-emitting diodes (PeLEDs). However, the complex bonding between passivators and perovskites severely suppresses the passivation process, which still lacks comprehensive understanding. Herein, the number, category, and degree of bonds between different functional groups and the perovskite are quantitatively assessed to study the passivation dynamics. Functional groups with high electrostatic potential and large steric hindrance prioritize strong bonding with organic cations and halides on the perfect surface, leading to suppressed coordination with bulky defects. By modulating the binding priorities and coordination capacity, hindrance from the intense interaction with perfect perovskite is significantly reduced, leading to a more direct passivation process. Consequently, the near-infrared PeLED without external light out-coupling demonstrates a record external quantum efficiency of 24.3% at a current density of 42 mA cm-2. In addition, the device exhibits a record-level-cycle ON/OFF switching of 20 000 and ultralong half-lifetime of 1126.3 h under 5 mA cm-2. An in-depth understanding of the passivators can offer new insights into the development of high-performance PeLEDs.

11.
Sleep Med ; 117: 33-39, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503198

RESUMEN

OBJECTIVES: Previous research has highlighted a link between electronic media use and sleep outcomes, but the nuanced impacts of screen use at different time of day and activities on adolescent sleep are underexplored. METHODS: 831 participants underwent online assessment three times with interval of three months regarding their screen time and activities at specific times of the day, daytime sleepiness was assessed with the Epworth Sleepiness Scale, and sleep outcomes were assessed with the Pittsburgh Sleep Quality Index and Insomnia Severity Index. The associations between time spent on various screen activities, and sleep outcomes were examined respectively after controlling for inter-individual differences using the Random Intercept Cross-Lagged Panel Model models and LMMs. RESULTS: The RI_CLPM model revealed that both electronic screen time during daytime and after lights off in the evening in Wave1 negatively predicted the sleep quality in Wave2; the nighttime screen time before lights off in Wave1 significantly negatively predicted the seventy of insomnia in Wave2. Whereas no cross-lag and predictive effects of sleep outcomes on screen time were revealed. Moreover, daytime screen exposure, including T.V. watching and social media use, and nighttime music listening were negatively associated with sleep quality. Conversely, nighttime screen time of shopping and working/studying positively influenced sleep quality. Additionally, daytime screen time of T.V. viewing was positively associated with increased insomnia severity, whereas nighttime work/study-related screen time negatively affected insomnia severity. Nighttime screen time of music listening negatively predicted daytime sleepiness. CONCLUSIONS: The current findings contributed to the existing literature suggesting that the effects of electronic screen time on sleep depended on both the time of day and type of screen activities.


Asunto(s)
Trastornos de Somnolencia Excesiva , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Adolescente , Estudios Longitudinales , Tiempo de Pantalla , Sueño
12.
Adv Sci (Weinh) ; 11(18): e2309500, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447143

RESUMEN

The inefficient charge transport and large exciton binding energy of quasi-2D perovskites pose challenges to the emission efficiency and roll-off issues for perovskite light-emitting diodes (PeLEDs) despite excellent stability compared to 3D counterparts. Herein, alkyldiammonium cations with different molecular sizes, namely 1,4-butanediamine (BDA), 1,6-hexanediamine (HDA) and 1,8-octanediamine (ODA), are employed into quasi-2D perovskites, to simultaneously modulate the injection efficiency and recombination dynamics. The size increase of the bulky cation leads to increased excitonic recombination and also larger Auger recombination rate. Besides, the larger size assists the formation of randomly distributed 2D perovskite nanoplates, which results in less efficient injection and deteriorates the electroluminescent performance. Moderate exciton binding energy, suppressed 2D phases and balanced carrier injection of HDA-based PeLEDs contribute to a peak external quantum efficiency of 21.9%, among the highest in quasi-2D perovskite based near-infrared devices. Besides, the HDA-PeLED shows an ultralong operational half-lifetime T50 up to 479 h at 20 mA cm‒2, and sustains the initial performance after a record-level 30 000 cycles of ON-OFF switching, attributed to the suppressed migration of iodide anions into adjacent layers and the electrochemical reaction in HDA-PeLEDs. This work provides a potential direction of cation design for efficient and stable quasi-2D-PeLEDs.

13.
Adv Sci (Weinh) ; 11(21): e2309555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38502881

RESUMEN

Photo-rechargeable zinc-ion batteries (PRZIBs) have attracted much attention in the field of energy storage due to their high safety and dexterity compared with currently integrated lithium-ion batteries and solar cells. However, challenges remain toward their practical applications, originating from the unsatisfactory structural design of photocathodes, which results in low photoelectric conversion efficiency (PCE). Herein, a flexible MoS2/SnO2-based photocathode is developed via constructing a sunflower-shaped light-trapping nanostructure with 3D hierarchical and self-supporting properties, enabled by the hierarchical embellishment of MoS2 nanosheets and SnO2 quantum dots on carbon cloth (MoS2/SnO2 QDs@CC). This structural design provides a favorable pathway for the effective separation of photogenerated electron-hole pairs and the efficient storage of Zn2+ on photocathodes. Consequently, the PRZIB assembled with MoS2/SnO2 QDs@CC delivers a desirable capacity of 366 mAh g-1 under a light intensity of 100 mW cm-2, and achieves an ultra-high PCE of 2.7% at a current density of 0.125 mA cm-2. In practice, an integrated battery system consisting of four series-connected quasi-solid-state PRZIBs is successfully applied as a wearable wristband of smartwatches, which opens a new door for the application of PRZIBs in next-generation flexible energy storage devices.

14.
Light Sci Appl ; 13(1): 63, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429259

RESUMEN

In the past two decades, the research and development of light-triggered molecular machines have mainly focused on developing molecular devices at the nanoscale. A key scientific issue in the field is how to amplify the controlled motion of molecules at the nanoscale along multiple length scales, such as the mesoscopic or the macroscopic scale, or in a more practical perspective, how to convert molecular motion into changes of properties of a macroscopic material. Light-driven molecular motors are able to perform repetitive unidirectional rotation upon irradiation, which offers unique opportunities for responsive macroscopic systems. With several reviews that focus on the design, synthesis and operation of the motors at the nanoscale, photo-responsive macroscopic materials based on light-driven molecular motors have not been comprehensively summarized. In the present review, we first discuss the strategy of confining absolute molecular rotation into relative rotation by grafting motors on surfaces. Secondly, examples of self-assemble motors in supramolecular polymers with high internal order are illustrated. Moreover, we will focus on building of motors in a covalently linked system such as polymeric gels and polymeric liquid crystals to generate complex responsive functions. Finally, a perspective toward future developments and opportunities is given. This review helps us getting a more and more clear picture and understanding on how complex movement can be programmed in light-responsive systems and how man-made adaptive materials can be invented, which can serve as an important guideline for further design of complex and advanced responsive materials.

15.
Small ; : e2310359, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385806

RESUMEN

Electrowetting displays (EWDs) based on microfluidics are highly sought after in the fields of electronic devices, smart homes, and information communication. However, the power supply of the EWD systems for visually engaging multi-color displays remains a big challenge. Herein, self-powered colorful dynamic display systems are developed by integrating the triboelectric nanogenerator (TENG) with the EWD device. The TENG is designed with a nanotube-patterned surface and can generate open-circuit voltages ranging from 30 to 295 V by controlling the contact area. The wetting property of the micro-droplet exhibits a response to the applied voltage, enabling the triboelectricity-triggered electrowetting-on-dielectric. Driven by the voltage of 160 V, the monochromatic EWD exhibits bright color switching from magenta to transparent with a pixel aperture ratio of 78%, and the recovery process can be rapidly completed. Furthermore, the self-powered colorful dynamic EWD system can be achieved. By selectively applying the voltage to the pixels in the three monochromatic layers that constitute the colorful EWD, the wetting properties of the fluids can be controlled, allowing for colorful dynamic display. This work contributes to the advancement of color display technology for portable and wearable electronic ink displays, indoor and outdoor sports equipment, and information communication.

16.
Nanomaterials (Basel) ; 14(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38392720

RESUMEN

Electrowetting with a dielectric layer is commonly preferred in practical applications. However, its potential is often limited by factors like the properties of the dielectric layer and its breakdown, along with the complexity of the deposition method. Fortunately, advancements in 3D inkjet printing offer a more adaptable solution for making patterned functional layers. In this study, we used a negative photoresist (HN-1901) to create a new dielectric layer for an electrowetting display on a 3-inch ITO glass using a Dimatix DMP-2580 inkjet printer. The resulting devices performed better due to their enhanced resistance to dielectric breakdown. We meticulously investigated the physical properties of the photoresist material and printer settings to achieve optimal printing. We also controlled the uniformity of the dielectric layer by adjusting ink drop spacing. Compared to traditional electrowetting display devices, those with inkjet-printed dielectric layers showed significantly fewer defects like bubbles and electrode corrosion. They maintained an outstanding response time and breakdown resistance, operating at an open voltage of 20 V. Remarkably, these devices achieved faster response times of ton 22.3 ms and toff 14.2 ms, surpassing the performance of the standard device.

17.
Nat Commun ; 15(1): 1893, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424438

RESUMEN

Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)2(MA)n-1PbnI3n+1 Ruddlesden-Popper perovskites using time-resolved photoluminescence microscopy. We reveal that the free exciton mobilities in exfoliated thin flakes can be improved from around 8 cm2 V-1 s-1 to 280 cm2V-1s-1 by anchoring the soft butyl ammonium cation with a polymethyl methacrylate network at the surface. The mobility of the latter is close to the theoretical limit of Mott-Ioffe-Regel criterion. Combining optical measurements and theoretical studies, it is unveiled that the polymethyl methacrylate network significantly improve the lattice rigidity resulting in the decrease of deformation potential scattering and lattice fluctuation at the surface few layers. Our work elucidates the origin of high exciton mobility in Ruddlesden-Popper perovskites and opens up avenues to regulate exciton transport in two-dimensional materials.

18.
ACS Appl Mater Interfaces ; 16(3): 4126-4137, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38191293

RESUMEN

Droplet directional transport is one of the central topics in microfluidics and lab-on-a-chip applications. Selective transport of diverse droplets, particularly in another liquid phase environment with controlled directions, is still challenging. In this work, we propose an electric-field gradient-driven droplet directional transport platform facilitated by a robust lubricant surface. On the platform, we clearly demonstrated a liquid-inherent critical frequency-dominated selective transport of diverse droplets and a driving mechanism transition from electrowetting to liquid dielectrophoresis. Enlightened by the Kelvin-Helmholtz theory, we first realize the directional droplet transport in another liquid phase whenever a permittivity difference exists. Co-transport of multiple droplets and various combinations of droplet types, as well as multifunctional droplet transport modes, are realized based on the presented powerful electric-field gradient-driven platform, overcoming the limitations of the surrounding environment, liquid conductivity, and intrinsic solid-liquid wetting property existing in traditional droplet transport strategies. This work may inspire new applications in liquid separation, multiphase microfluidic manipulation, chemical reagent selection, and so on.

19.
J Physiol Anthropol ; 43(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172965

RESUMEN

BACKGROUND: This study aims to investigate the behavioral and neurophysiological changes accompanying the empathy for pain among individuals with insomnia in nonclinical samples, which has been scarcely explored in the existing literature despite the deleterious effects of sleep disturbance on social behavior, and interactions had been well-documented. METHODS: Twenty-one individuals with insomnia in nonclinical samples and 20 healthy individuals as normal controls participated in the study. Electroencephalograph (EEG) was continuously recorded, while the participants underwent an empathy for pain task. RESULTS: Subjective ratings of pain for painful and non-painful images revealed no statistically significant differences between the insomnia and control groups. The painful images induced a smaller P2 compared to non-painful images in the insomnia group, whereas no such difference was revealed for the controls. Moreover, a higher power density of the alpha and theta2 bands in the posterior brain regions was found in the insomnia group compared to the control group. CONCLUSION: These findings suggest that individuals with insomnia exhibit altered neurophysiological responses to pain stimuli and a lower capacity to share empathy for pain. These alterations may be associated with changes in attentional mechanisms.


Asunto(s)
Potenciales Evocados , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Potenciales Evocados/fisiología , Empatía , Electroencefalografía , Dolor
20.
Adv Mater ; 36(5): e2304910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926960

RESUMEN

The adaptive control of sunlight through photochromic smart windows could have a huge impact on the energy efficiency and daylight comfort in buildings. However, the fabrication of inorganic nanoparticle and polymer composite photochromic films with a high contrast ratio and high transparency/low haze remains a challenge. Here, a solution method is presented for the in situ growth of copper-doped tungsten trioxide nanoparticles in polymethyl methacrylate, which allows a low-cost preparation of photochromic films with a high luminous transparency (luminous transmittance Tlum = 91%) and scalability (30 × 350 cm2 ). High modulation of visible light (ΔTlum = 73%) and solar heat (modulation of solar transmittance ΔTsol = 73%, modulation of solar heat gain coefficient ΔSHGC = 0.5) of the film improves the indoor daylight comfort and energy efficiency. Simulation results show that low-e windows with the photochromic film applied can greatly enhance the energy efficiency and daylight comfort. This photochromic film presents an attractive strategy for achieving more energy-efficient buildings and carbon neutrality to combat global climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA