Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Brain ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39439207

RESUMEN

Gabapentin and pregabalin are inhibitory ligands of both α2δ-1 and α2δ-2 proteins (also known as subunits of voltage-activated Ca2+ channels) and are commonly prescribed for the treatment of neuropathic pain and epilepsy. However, these drugs can cause gait disorders and ataxia through unknown mechanisms. α2δ-2 and GluK1, a glutamate-gated kainate receptor subtype, are coexpressed in cerebellar Purkinje cells. In this study, we used a heterologous expression system and Purkinje cells to investigate the potential role of α2δ-2 in regulating GluK1-containing kainate receptor activity. Whole-cell patch clamp recordings showed that α2δ-2 coexpression augmented GluK1, but not GluK2, currents in HEK293 cells, and pregabalin abolished this augmentation. Pregabalin lost its inhibitory effect on GluK1 currents in HEK293 cells expressing both GluK1 and the α2δ-2(R282A) mutant. Blocking GluK1-containing receptors with UBP310 substantially reduced the amplitude of excitatory postsynaptic currents at parallel fiber-Purkinje cell synapses in mice. Also, pregabalin markedly attenuated the amplitude of excitatory postsynaptic currents and currents elicited by ATPA, a selective GluK1 receptor agonist, in Purkinje cells in Cacna2d1 knockout mice. Coimmunoprecipitation assays indicated that α2δ-2, but not α2δ-1, formed a protein complex with GluK1 in cerebellar tissues and HEK293 cells through its C terminus. Furthermore, α2δ-2 coexpression potentiated surface expression of GluK1 proteins in HEK293 cells, whereas pregabalin reduced GluK1 proteins in cerebellar synaptosomes. Disrupting α2δ-2-GluK1 interactions using α2δ-2 C-terminus peptide abrogated the potentiating effect of α2δ-2 on GluK1 currents and attenuated the amplitude of GluK1-mediated excitatory postsynaptic currents in Purkinje cells. However, neither pregabalin nor α2δ-2 C-terminus peptide had significant effect on P/Q-type currents in HEK293 cells. Additionally, CRISPR/Cas9-induced conditional knockdown of Cacna2d2 or Grik1 in Purkinje cells, as well as microinjection of α2δ-2 C-terminus peptide or UBP310 into the cerebellum, substantially impaired beam walking and rotarod performance in mice. Our study reveals that α2δ-2 directly interacts with GluK1 independently of its conventional role as a voltage-activated Ca2+ channel subunit. α2δ-2 regulates motor coordination by promoting synaptic expression and activity in GluK1-containing kainate receptors in Purkinje cells.

2.
World J Gastrointest Surg ; 16(7): 2157-2166, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39087119

RESUMEN

BACKGROUND: Gastrointestinal symptoms are common in patients with uremia undergoing hemodialysis, and these symptoms seriously affect patients' prognosis. AIM: To assess the occurrence and factors influencing gastrointestinal symptoms in patients with uremia undergoing hemodialysis. METHODS: We retrospectively selected 98 patients with uremia who underwent regular hemodialysis treatment in the blood purification center of our hospital from December 2022 to December 2023. The gastrointestinal symptoms and scores of each dimension were evaluated using the Gastrointestinal Symptom Grading Scale (GSRS). Patients were divided into gastrointestinal symptoms and no gastrointestinal symptom groups according to whether they had gastrointestinal symptoms. The factors that may affect gastrointestinal symptoms were identified by single-factor analysis. Multiple logistic regression analysis was performed to identify independent risk factors for gastrointestinal symptoms. RESULTS: Gastrointestinal symptoms included indigestion, constipation, reflux, diarrhea, abdominal pain, and eating disorders, and the total average GSRS score was 1.35 ± 0.47. This study showed that age, number of tablets, dialysis time, glucocorticoid, parathyroid hormone (PTH), combined diabetes mellitus and C-reactive protein (CRP) were independent risk factors for gastrointestinal symptoms in patients with uremia undergoing hemodialysis, whereas body mass index (BMI), hemoglobin (Hb), and urea clearance index were independent protective factors (P < 0.05). CONCLUSION: Gastrointestinal symptoms are mostly mild in patients with uremia undergoing hemodialysis, most commonly including dyspepsia, eating disorders, and gastroesophageal reflux. The independent influencing factors mainly include the BMI, age, number of pills taken, dialysis time, urea clearance index, Hb, use of glucocorticoids, and thyroid hormone level. PTH, CRP, and diabetes are clinically related factors influencing the occurrence of gastrointestinal symptoms, and targeted prevention can be performed.

3.
J Physiol ; 602(10): 2179-2197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38630836

RESUMEN

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Asunto(s)
Calcineurina , Neuronas , Núcleo Hipotalámico Paraventricular , Ratas Sprague-Dawley , Receptores AMPA , Tacrolimus , Animales , Receptores AMPA/metabolismo , Receptores AMPA/fisiología , Calcineurina/metabolismo , Masculino , Tacrolimus/farmacología , Ratas , Neuronas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Inhibidores de la Calcineurina/farmacología , Sinapsis/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
4.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630847

RESUMEN

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Asunto(s)
Aprendizaje Profundo , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Lesiones Precancerosas , Humanos , Persona de Mediana Edad , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Estudios Prospectivos , Lesiones Precancerosas/patología
5.
BMC Plant Biol ; 24(1): 49, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216904

RESUMEN

BACKGROUND: Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS: High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS: From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.


Asunto(s)
Dalbergia , Humanos , Dalbergia/metabolismo , Salinidad , Plantas/metabolismo , Antioxidantes/metabolismo , Fotosíntesis
6.
Plant Physiol ; 194(4): 2301-2321, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38048404

RESUMEN

Field and greenhouse studies attempting to describe the molecular responses of plant species under waterlogging (WL) combined with salinity (ST) are almost nonexistent. We integrated transcriptional, metabolic, and physiological responses involving several crucial transcripts and common differentially expressed genes and metabolites in fragrant rosewood (Dalbergia odorifera) leaflets to dissect plant-specific molecular responses and patterns under WL combined with ST (SWL). We discovered that the synergistic pattern of the transcriptional response of fragrant rosewood under SWL was exclusively characterized by the number of regulated transcripts. The response patterns under SWL based on transcriptome and metabolome regulation statuses revealed different patterns (additive, dominant, neutral, minor, unilateral, and antagonistic) of transcripts or metabolites that were commonly regulated or expressed uniquely under SWL. Under SWL, the synergistic transcriptional response of several functional gene subsets was positively associated with several metabolomic and physiological responses related to the shutdown of the photosynthetic apparatus and the extensive degradation of starch into saccharides through α-amylase, ß-amylase, and α-glucosidase or plastoglobuli accumulation. The dissimilarity between the regulation status and number of transcripts in plants under combined stresses led to nonsynergistic responses in several physiological and phytohormonal traits. As inferred from the impressive synergistic transcriptional response to morpho-physiological changes, combined stresses exhibited a gradually decreasing effect on the changes observed at the molecular level compared to those in the morphological one. Here, by characterizing the molecular responses and patterns of plant species under SWL, our study considerably improves our understanding of the molecular mechanisms underlying combined stress.


Asunto(s)
Dalbergia , Dalbergia/genética , Salinidad , Transcriptoma/genética , Fenotipo , Metabolómica , Estrés Fisiológico/genética
7.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160798

RESUMEN

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Asunto(s)
Desmetilación del ADN , Hipotálamo , Receptor de Angiotensina Tipo 1 , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Ratas , Presión Sanguínea , ADN/metabolismo , Hipertensión/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , ARN Mensajero/genética , Sistema Nervioso Simpático/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
8.
Int J Geriatr Psychiatry ; 38(9): e5994, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37655500

RESUMEN

OBJECTIVES: We aimed to compare the effectiveness of interventions in cognitive function and frailty status and rank these interventions. METHODS: Data Sources-We searched PubMed, Embase, CINAHL, PsycINFO, Web of Science, Cochrane Library, Central Register of Controlled Trials (CENTRAL), CNKI, Wanfang, VIP and Google scholar. Data synthesis-The risk of bias was assessed using the Cochrane risk bias assessment tool. Statistical heterogeneity was assessed using the Chi-square test and quantified by I2 . The results were pooled using the standardized mean difference (SMD). The rank probability for each intervention was calculated using the surface under the cumulative ranking curve (SUCRA). Additionally, the quality of the evidence was evaluated using the GRADE approach. RESULTS: A total of 10 randomized controlled trials (RCTs) involving 1110 patients were included in our analysis. The network map of cognitive function comprised 9 RCTs with 1347 participants, examining eight different interventions. Nutritional support (SUCRA = 99.9%, SMD = 3.02, 95% CI: 2.53, 3.51) may be the most effective intervention to improve cognitive function. The network map of frailty (including 9 RCTs with 1017 participants and 9 interventions) suggested that multicomponent exercises (SUCRA = 96.4%, SMD = -5.10, 95% CI: -5.96, -4.23) tended to have a greater effect. CONCLUSIONS: Community-based multicomponent exercises have shown significant benefits for improving cognitive function and frailty status in older adults, with moderate certainty. For hospitalized older patients with Cognitive frailty (CF), current evidence suggests that nutritional support yields the most improvement. Additionally, aerobic exercise and dual-task training have proven effective in managing CF. Further studies are needed to validate these preliminary findings and exploring more accessible and effective physical and cognitive interventions to prevent CF in aging.


Asunto(s)
Fragilidad , Anciano , Humanos , Envejecimiento , Cognición , Fragilidad/terapia , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto
9.
Circ Res ; 133(7): 611-627, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37605933

RESUMEN

BACKGROUND: Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. METHODS: Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states. RESULTS: Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. CONCLUSIONS: α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor-induced neurogenic hypertension.


Asunto(s)
Inhibidores de la Calcineurina , Hipertensión , Animales , Ratones , Ratas , Inhibidores de la Calcineurina/farmacología , Receptores de N-Metil-D-Aspartato , Tacrolimus/toxicidad , Gabapentina , Encéfalo , Hipertensión/inducido químicamente , Ácido Aspártico
10.
Genes Dis ; 10(5): 1870-1882, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492730

RESUMEN

Hydrogen sulfide (H2S) is one of the three known gas signal transducers, and since its potential physiological role was reported, the literature on H2S has been increasing. H2S is involved in processes such as vasodilation, neurotransmission, angiogenesis, inflammation, and the prevention of ischemia-reperfusion injury, and its mechanism remains to be further studied. At present, the role of post-translational processing of proteins has been considered as a possible mechanism for the involvement of H2S in a variety of physiological processes. Current studies have shown that H2S is involved in S-sulfhydration, phosphorylation, and S-nitrosylation of proteins, etc. This paper focuses on the effects of protein modification involving H2S on physiological and pathological processes, looking forward to providing guidance for subsequent research.

11.
Open Life Sci ; 18(1): 20220619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333483

RESUMEN

Waldenström macroglobulinemia (WM) rarely leads to pulmonary embolism. Due to its low incidence, the underlying pathophysiology, prognosis, and optimal treatment remain largely unexplored and uninvestigated. In this study, a patient with a double-clonal WM, a rare subtype, presented with pulmonary embolism. The patient had a small number of plasma cells without morphological abnormalities, and an effective therapeutic response was observed. Nonetheless, the clinical prognosis requires a long-term follow-up.

12.
World J Gastrointest Surg ; 15(4): 655-663, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37206071

RESUMEN

BACKGROUND: Recently, stem cell therapy has been extensively studied as a promising treatment for decompensated liver cirrhosis (DLC). Technological advances in endoscopic ultrasonography (EUS) have facilitated EUS-guided portal vein (PV) access, through which stem cells can be precisely infused. AIM: To investigate the feasibility and safety of fresh autologous bone marrow injection into the PV under EUS guidance in patients with DLC. METHODS: Five patients with DLC were enrolled in this study after they provided written informed consent. EUS-guided intraportal bone marrow injection with a 22G FNA needle was performed using a transgastric, transhepatic approach. Several parameters were assessed before and after the procedure for a follow-up period of 12 mo. RESULTS: Four males and one female with a mean age of 51 years old participated in this study. All patients had hepatitis B virus-related DLC. EUS-guided intraportal bone marrow injection was performed in all patients successfully without any complications such as hemorrhage. The clinical outcomes of the patients revealed improvements in clinical symptoms, serum albumin, ascites, and Child-Pugh scores throughout the 12-mo follow-up. CONCLUSION: The use of EUS-guided fine needle injection for intraportal delivery of bone marrow was feasible and safe and appeared effective in patients with DLC. This treatment may thus be a safe, effective, non-radioactive, and minimally invasive treatment for DLC.

13.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37160364

RESUMEN

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Asunto(s)
Hipertensión Esencial , Hipertensión , Receptores de N-Metil-D-Aspartato , Animales , Masculino , Ratas , Hormona Adrenocorticotrópica , Hormona Liberadora de Corticotropina/metabolismo , Hipertensión Esencial/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/farmacología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático/fisiología
14.
Front Public Health ; 11: 1079593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077192

RESUMEN

Background: The study explored sources of meaning in older adults and the action path among family care, meaning in life, quality of life, and depression. Materials and methods: We investigated 627 older adults using the Sources of Meaning in Life Scale for the Elderly (SMSE), the Family Care Index (APGAR), the Center for Epidemiological Studies Depression Scale-10 (CES-D-10), and the EuroqOL-5 Dimensions (EQ-5D). Results: Scores categorized 454 older adults with good family function, 99 with moderate, and 47 with severe family dysfunction; 110 older adults had depression. The structural equation model showed that family care affected the quality of life and depression by influencing meaning, and depression had a significant negative effect on the quality of life (P < 0.05). The model was a good fit for the data (χ2/df = 3.300, SRMR = 0.0291, GFI = 0.975, IFI = 0.971, TLI = 0.952, CFI = 0.971, RMSEA = 0.062). Conclusion: Meaning in life is an intermediary factor that affects depression and quality of life in older adults. Family care had a significant positive impact on SMSE and a negative influence on depression. The SMSE effectively clarifies the sources of meaning in life and can be used to improve meaning and promote mental health in older adults.


Asunto(s)
Depresión , Pueblos del Este de Asia , Relaciones Familiares , Satisfacción Personal , Calidad de Vida , Valor de la Vida , Anciano , Humanos , Depresión/etnología , Depresión/psicología , Pueblos del Este de Asia/psicología , Salud Mental/etnología , Calidad de Vida/psicología , Encuestas y Cuestionarios , Relaciones Interpersonales , Cuidadores/psicología , Relaciones Familiares/etnología , Relaciones Familiares/psicología , Indicadores de Salud
15.
Cell Prolif ; 56(9): e13449, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36929586

RESUMEN

Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.


Asunto(s)
Sulfuro de Hidrógeno , Neoplasias , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Neoplasias/tratamiento farmacológico , Metabolismo Energético/fisiología
16.
J Integr Plant Biol ; 65(3): 674-691, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36250511

RESUMEN

Drought and low temperature are two key environmental factors that induce adult citrus flowering. However, the underlying regulation mechanism is poorly understood. The bZIP transcription factor FD is a key component of the florigen activation complex (FAC) which is composed of FLOWERING LOCUS T (FT), FD, and 14-3-3 proteins. In this study, isolation and characterization of CiFD in citrus found that there was alternative splicing (AS) of CiFD, forming two different proteins (CiFDα and CiFDß). Further investigation found that their expression patterns were similar in different tissues of citrus, but the subcellular localization and transcriptional activity were different. Overexpression of the CiFD DNA sequence (CiFD-DNA), CiFDα, or CiFDß in tobacco and citrus showed early flowering, and CiFD-DNA transgenic plants were the earliest, followed by CiFDß and CiFDα. Interestingly, CiFDα and CiFDß were induced by low temperature and drought, respectively. Further analysis showed that CiFDα can form a FAC complex with CiFT, Ci14-3-3, and then bind to the citrus APETALA1 (CiAP1) promoter and promote its expression. However, CiFDß can directly bind to the CiAP1 promoter independently of CiFT and Ci14-3-3. These results showed that CiFDß can form a more direct and simplified pathway that is independent of the FAC complex to regulate drought-induced flowering through AS. In addition, a bHLH transcription factor (CibHLH96) binds to CiFD promoter and promotes the expression of CiFD under drought condition. Transgenic analysis found that CibHLH96 can promote flowering in transgenic tobacco. These results suggest that CiFD is involved in drought- and low-temperature-induced citrus flowering through different regulatory patterns.


Asunto(s)
Citrus , Citrus/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Plantas/metabolismo , Empalme Alternativo , Flores/fisiología , Sequías , Temperatura , Florigena/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
17.
Front Med (Lausanne) ; 9: 975698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213633

RESUMEN

Background: Small intestinal lymphangioma is a very rare benign lesion. Thus far, the literature on small intestinal lymphangioma has mainly involved case reports. The present study retrospectively examined the clinical features of patients with a pathological diagnosis of small intestinal lymphangioma. Materials and methods: From January 2010 to January 2021, 15 patients were pathologically diagnosed with small intestinal lymphangioma. The age, gender, clinical manifestation, computed tomography (CT) findings, endoscopic findings, localization of the lesion, treatment method, complications, and follow-up were retrospectively analyzed. Results: Most of the patients had no symptoms, and those with symptoms had melena or abdominal pain. Lymphangioma was located in the duodenum in nine cases (60.0%), jejunum in two (13.3%), jejunal-ileal junction with mesentery involvement in one (6.7%) and ileum in three (20.0%). Three cases (20.0%) had multiple lesions, and the other 12 (80.0%) had single lesions. The median size of the lesions was 0.8 cm. Thirteen cases were found by endoscopy, and nine cases of them had white-colored spots on the surface. Ten cases (66.7%) underwent endoscopic treatment, three (20.0%) underwent surgical treatment, and two (13.3%) were followed up. Postoperative acute pancreatitis developed in one patient after endoscopic resection of duodenal papillary lymphangioma; postoperative abdominal bleeding occurred in one patient with jejunal lymphangioma who underwent partial small bowel resection. Conclusion: Small intestinal lymphangioma is extremely rare, and its clinical manifestations are non-specific. Endoscopy is of great value in the diagnosis of small intestinal lymphangioma. Depending on the clinical manifestations, the size, location and scope of the lesions, follow-up, endoscopic treatment and surgery can be selected.

18.
Plant Cell Environ ; 45(12): 3505-3522, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36117312

RESUMEN

Flower induction in adult citrus is mainly regulated by drought and low temperatures. However, the mechanism of FLOWERING LOCUS T regulation of citrus flowering (CiFT) under two flower-inductive stimuli remains largely unclear. In this study, a citrus transcription factor, nuclear factor YA (CiNF-YA1), was found to specifically bind to the CiFT promoter by forming a complex with CiNF-YB2 and CiNF-YC2 to activate CiFT expression. CiNF-YA1 was induced in juvenile citrus by low temperature and drought treatments. Overexpression of CiNF-YA1 increased drought susceptibility in transgenic citrus, whereas suppression of CiNF-YA1 enhanced drought tolerance in silenced citrus plants. Furthermore, a GOLDEN2 - LIKE protein (CiFE) that interacts with CiFT protein was also isolated. Further experimental evidence showed that CiFE binds to the citrus LEAFY (CiLFY) promoter and activates its expression. In addition, the expressions of CiNF-YA1 and CiFE showed a seasonal increase during the floral induction period and were induced by artificial drought and low-temperature treatments at which floral induction occurred. These results indicate that CiNF-YA1 may activate CiFT expression in response to drought and low temperatures by binding to the CiFT promoter. CiFT then forms a complex with CiFE to activate CiLFY, thereby promoting the flowering of adult citrus.


Asunto(s)
Citrus , Citrus/genética , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Temperatura , Sequías , Flores/genética , Plantas Modificadas Genéticamente/metabolismo
19.
ESC Heart Fail ; 9(5): 3407-3417, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35841124

RESUMEN

AIMS: Orchestrating the transition from reversible medial hypertrophy to irreversible plexiform lesions is crucial for pulmonary arterial hypertension related to congenital heart disease (CHD-PAH). Transgelin is an actin-binding protein that modulates pulmonary arterial smooth muscle cell (PASMC) dysfunction. In this study, we aimed to probe the molecular mechanism and biological function of transgelin in the pathogenesis of CHD-PAH. METHODS AND RESULTS: Transgelin expression was detected in lung tissues from both CHD-PAH patients and monocrotaline (MCT)-plus aortocaval (AV)-induced PAH rats by immunohistochemistry. In vitro, the effects of transgelin on the proliferation, migration, and apoptosis of human PASMCs (HPASMCs) were evaluated by the cell count and EdU assays, transwell migration assay, and TUNEL assay, respectively. And the effect of transgelin on the expression of HPASMC phenotype markers was assessed by the immunoblotting assay. (i) Compared with the normal control group (n = 12), transgelin expression was significantly overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD-PAH group (n = 4) (reversible group vs. control group: 18.2 ± 5.1 vs. 13.6 ± 2.6%, P < 0.05; irreversible group vs. control group: 29.9 ± 4.7 vs. 13.6 ± 2.6%, P < 0.001; irreversible group vs. reversible group: 29.9 ± 4.7 vs. 18.2 ± 5.1, P < 0.001). This result was further confirmed in MCT-AV-induced PAH rats. Besides, the transgelin expression level was positively correlated with the pathological grading of pulmonary arteries in CHD-PAH patients (r = 0.48, P = 0.03, n = 19). (ii) Compared with the normal control group (n = 12), TGF-ß1 expression was notably overexpressed in the pulmonary arterioles of the reversible (n = 15) and irreversible CHD-PAH group (n = 4) (reversible group vs. control group: 14.8 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. control group: 20.1 ± 4.4 vs. 6.0 ± 2.5%, P < 0.001; irreversible group vs. reversible group: 20.1 ± 4.4 vs. 14.8 ± 4.4, P < 0.01). The progression-dependent correlation between TGF-ß1 and transgelin was demonstrated in CHD-PAH patients (r = 0.48, P = 0.04, n = 19) and MCT-AV-induced PAH rats, which was further confirmed at sub-cellular levels. (iii) Knockdown of transgelin diminished proliferation, migration, apoptosis resistance, and phenotypic transformation of HPASMCs through repressing the TGF-ß1 signalling pathway. On the contrary, transgelin overexpression resulted in the opposite effects. CONCLUSIONS: These results indicate that transgelin may be an indicator of CHD-PAH development via boosting HPASMC dysfunction through positive regulation of the TGF-ß1 signalling pathway, as well as a potential therapeutic target for the treatment of CHD-PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratas , Proliferación Celular/genética , Hipertensión Pulmonar/etiología , Proteínas de Microfilamentos/metabolismo , Monocrotalina/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/etiología , Arteria Pulmonar , Factor de Crecimiento Transformador beta1/metabolismo
20.
Circ Res ; 131(4): 345-360, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862168

RESUMEN

RATIONALE: Hypertension is a common and serious adverse effect of calcineurin inhibitors, including cyclosporine and tacrolimus (FK506). Although increased sympathetic nerve discharges are associated with calcineurin inhibitor-induced hypertension, the sources of excess sympathetic outflow and underlying mechanisms remain elusive. Calcineurin (protein phosphatase-2B) is broadly expressed in the brain, including the paraventricular nuclear (PVN) of the hypothalamus, which is critically involved in regulating sympathetic vasomotor tone. OBJECTIVE: We determined whether prolonged treatment with the calcineurin inhibitor causes elevated sympathetic output and persistent hypertension by potentiating synaptic N-methyl-D-aspartate (NMDA) receptor activity in the PVN. METHODS AND RESULTS: Telemetry recordings showed that systemic administration of FK506 (3 mg/kg per day) for 14 days caused a gradual and profound increase in arterial blood pressure in rats, which lasted at least 7 days after discontinuing FK506 treatment. Correspondingly, systemic treatment with FK506 markedly reduced calcineurin activity in the PVN and circumventricular organs, but not rostral ventrolateral medulla, and increased the phosphorylation level and synaptic trafficking of NMDA receptors in the PVN. Immunocytochemistry labeling showed that calcineurin was expressed in presympathetic neurons in the PVN. Whole-cell patch-clamp recordings in brain slices revealed that treatment with FK506 increased baseline firing activity of PVN presympathetic neurons; this increase was blocked by the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Also, treatment with FK506 markedly increased presynaptic and postsynaptic NMDA receptor activity of PVN presympathetic neurons. Furthermore, microinjection of the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist into the PVN of anesthetized rats preferentially attenuated renal sympathetic nerve discharges and blood pressure elevated by FK506 treatment. In addition, systemic administration of memantine, a clinically used NMDA receptor antagonist, effectively attenuated FK506 treatment-induced hypertension in conscious rats. CONCLUSIONS: Our findings reveal that normal calcineurin activity in the PVN constitutively restricts sympathetic vasomotor tone via suppressing NMDA receptor activity, which may be targeted for treating calcineurin inhibitor-induced hypertension.


Asunto(s)
Hipertensión , Receptores de N-Metil-D-Aspartato , Animales , Presión Sanguínea , Calcineurina , Inhibidores de la Calcineurina/farmacología , Hipotálamo/metabolismo , N-Metilaspartato/farmacología , Núcleo Hipotalámico Paraventricular , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático , Tacrolimus/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA