Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
BMC Psychiatry ; 24(1): 720, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39438849

RESUMEN

BACKGROUND: Schizophrenia is a debilitating mental disorder affecting about 1% of the global population, characterized by significant cognitive impairments and a strong hereditary component. Carnitine, particularly Levo-carnitine and its derivatives, plays a crucial role in cellular metabolism and mitochondrial function, with evidence suggesting a link between levo-carnitine deficiency and schizophrenia pathology. This study aims to investigate the causal relationship between different subtypes of levo-carnitine and the susceptibility to schizophrenia using Mendelian randomization analysis. METHODS: Forward Mendelian randomization analysis was conducted using levo-carnitine and its derivatives as exposure and schizophrenia as the outcome. Candidate data were obtained from the Open-GWAS database. Instrumental variables were identified as single nucleotide polymorphisms closely associated with exposure and harmonized with the outcome data after removing confounders and outliers. Mendelian randomization analysis was performed using inverse variance weighting as the primary approach, and sensitivity analysis was conducted to assess the reliability and robustness of the results. Finally, a reverse Mendelian randomization analysis was carried out using the same analytical procedures. RESULTS: The Mendelian randomization results indicate a significant negative causal relationship between isovaleryl-levo-carnitine and schizophrenia (P < 0.05), but no significant associations in other groups (P > 0.05). Additionally, the reverse Mendelian randomization analysis did not identify any causal relationship between schizophrenia and levo-carnitine related exposures (P > 0.05). Sensitivity analyses, including pleiotropy and heterogeneity analysis, did not reveal any potential bias in the Mendelian randomization results (P > 0.05). CONCLUSION: The results suggest that elevated levels of isovaleryl-levo-carnitine may potentially mitigate the risk of developing schizophrenia, highlighting the prospective therapeutic and preventive implications of isovaleryl-levo-carnitine in the clinical management of schizophrenia.


Asunto(s)
Carnitina , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Esquizofrenia , Esquizofrenia/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética
2.
DNA Repair (Amst) ; 143: 103770, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39357141

RESUMEN

The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.


Asunto(s)
ARN Largo no Codificante , Reparación del ADN por Recombinación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Línea Celular Tumoral , Sirtuina 1/metabolismo , Sirtuina 1/genética , Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Animales , Regiones Promotoras Genéticas
3.
J Neuroimmunol ; 396: 578444, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357132

RESUMEN

Despite receiving comprehensive treatment, the prognosis for low-grade gliomas (LGGs) patients varies considerably. Recent studies have focused extensively on ferroptosis, across a range of tumor types. Nevertheless, methodologies to evaluate the efficacy of radiotherapy for LGGs, from the perspective of ferroptosis-related genes (FRGs), remain strikingly rare. In this study, we conducted a retrospective study on the transcriptional profiles of LGG patients from the public databases and a local cohort. An FRG model was developed and validated, exhibits heightened robustness when contrasted with the traditional ssGSEA model. Patients demonstrating higher FRG scores were identified as a high-risk group, displaying a worse prognosis. By incorporating the FRG score alongside other prognosis-associated clinical indicators, we formulated an enhanced nomogram to achieve a higher level of prediction performance. Additionally, among LGG patients receiving radiotherapy, a poorer prognosis was observed in the high-risk group. Further investigation revealed that samples from the high-risk group generally exhibit a TME in an immuno-suppressive state. Collectively, we developed an FRG model and a robust nomogram for LGG prognostication. This study suggests that a high FRG score, indicative of an immunosuppressive TME, could potentially lead to a less favorable prognosis for certain LGG patients receiving radiotherapy.

4.
Cell Death Discov ; 10(1): 434, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394181

RESUMEN

DNA damage is considered to be a potentially unifying driver of ageing, and the stalling of DNA damage repair accelerates the cellular senescence. However, augmenting DNA repair has remained a great challenge due to the intricate repair mechanisms specific for multiple types of lesions. Herein, we miniaturized our modified detecting system for homologous recombination (HR) into a 96-well-based platform and performed a high-throughput chemical screen for FDA-approved drugs. We uncovered that amodiaquine could significantly augment HR repair at the noncytotoxic concentration. Further experiments demonstrated that amodiaquine remarkably suppressed stress-induced premature cellular senescence (SIPS), as evidenced by senescence-associated beta-galactosidase (SA-ß-gal) staining or senescence-related markers p21WAF1 and p16ink4a, and the expression of several cytokines. Mechanistic studies revealed that the stimulation of HR repair by amodiaquine might be mostly attributable to the promotion of SIRT1 at the transcriptional level. Additionally, SIRT1 depletion abolished the amodiaquine-mediated effects on DNA repair and cellular senescence, indicating that amodiaquine delayed the onset of SIPS via a SIRT1-dependent pathway. Taken together, this experimental approach paved the way for the identification of compounds that augment HR activity, which could help to underscore the therapeutic potential of targeting DNA repair for treating aging-related diseases.

5.
Nutrients ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125314

RESUMEN

Existing research indicates that different types of meat have varying effects on health and aging, but the specific causal relationships remain unclear. This study aimed to explore the causal relationship between different types of meat intake and aging-related phenotypes. This study employed Mendelian randomization (MR) to select genetic variants associated with meat intake from large genomic databases, ensuring the independence and pleiotropy-free nature of these instrumental variables (IVs), and calculated the F-statistic to evaluate the strength of the IVs. The validity of causal estimates was assessed through sensitivity analyses and various MR methods (MR-Egger, weighted median, inverse-variance weighted (IVW), simple mode, and weighted mode), with the MR-Egger regression intercept used to test for pleiotropy bias and Cochran's Q test employed to evaluate the heterogeneity of the results. The findings reveal a positive causal relationship between meat consumers and DNA methylation PhenoAge acceleration, suggesting that increased meat intake may accelerate the biological aging process. Specifically, lamb intake is found to have a positive causal effect on mitochondrial DNA copy number, while processed meat consumption shows a negative causal effect on telomere length. No significant causal relationships were observed for other types of meat intake. This study highlights the significant impact that processing and cooking methods have on meat's role in health and aging, enhancing our understanding of how specific types of meat and their preparation affect the aging process, providing a theoretical basis for dietary strategies aimed at delaying aging and enhancing quality of life.


Asunto(s)
Envejecimiento , Metilación de ADN , Carne , Análisis de la Aleatorización Mendeliana , Humanos , Envejecimiento/genética , Animales , ADN Mitocondrial/genética , Fenotipo , Ovinos , Dieta/efectos adversos , Causalidad , Carne Roja/efectos adversos
6.
Biomedicines ; 12(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39200338

RESUMEN

This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.

7.
Sci Rep ; 14(1): 15281, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961095

RESUMEN

With the rapid development of modern science and technology, navigation technology provides great convenience for people's life, but the problem of inaccurate localization in complex environments has always been a challenge that navigation technology needs to be solved urgently. To address this challenge, this paper proposes an augmented reality navigation method that combines image segmentation and multi-sensor fusion tracking registration. The method optimizes the image processing process through the GA-OTSU-Canny algorithm and combines high-precision multi-sensor information in order to achieve accurate tracking of positioning and guidance in complex environments. Experimental results show that the GA-OTSU-Canny algorithm has a faster image edge segmentation rate, and the fastest start speed is only 1.8 s, and the fastest intersection selection time is 1.2 s. The navigation system combining the image segmentation and sensor tracking and registration techniques has a highly efficient performance in real-world navigation, and its building recognition rates are all above 99%. The augmented reality navigation system not only improves the navigation accuracy in high-rise and urban canyon environments, but also significantly outperforms traditional navigation solutions in terms of navigation startup time and target building recognition accuracy. In summary, this research not only provides a new framework for the theoretical integration of image processing and multi-sensor data, but also brings innovative technical solutions for the development and application of practical navigation systems.

8.
Hum Genet ; 143(8): 979-993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066985

RESUMEN

Gasdermin E (GSDME), a member of the gasdermin protein family, is associated with post-lingual hearing loss. All GSDME pathogenic mutations lead to skipping exon 8; however, the molecular mechanisms underlying hearing loss caused by GSDME mutants remain unclear. GSDME was recently identified as one of the mediators of programmed cell death, including apoptosis and pyroptosis. Therefore, in this study, we injected mice with GSDME mutant (MT) and examined the expression levels to assess its effect on hearing impairment. We observed loss of hair cells in the organ of Corti and spiral ganglion neurons. Further, the N-terminal release from the GSDME mutant in HEI-OC1 cells caused pyroptosis, characterized by cell swelling and rupture of the plasma membrane, releasing lactate dehydrogenase and cytokines such as interleukin-1ß. We also observed that the N-terminal release from GSDME mutants could permeabilize the mitochondrial membrane, releasing cytochromes and activating the mitochondrial apoptotic pathway, thereby generating possible positive feedback on the cleavage of GSDME. Furthermore, we found that treatment with disulfiram or dimethyl fumarate might inhibit pyroptosis and apoptosis by inhibiting the release of GSDME-N from GSDME mutants. In conclusion, this study elucidated the molecular mechanism associated with hearing loss caused by GSDME gene mutations, offering novel insights for potential treatment strategies.


Asunto(s)
Apoptosis , Piroptosis , Piroptosis/genética , Animales , Ratones , Mutación con Ganancia de Función , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Humanos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Órgano Espiral/metabolismo , Órgano Espiral/patología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Gasderminas
9.
Cell Biol Toxicol ; 40(1): 45, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864940

RESUMEN

MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.


Asunto(s)
Complejo del Señalosoma COP9 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , FN-kappa B , Transducción de Señal , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Complejo del Señalosoma COP9/metabolismo , Complejo del Señalosoma COP9/genética , FN-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Ubiquitinación , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Progresión de la Enfermedad , Ratones Endogámicos BALB C , Femenino , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Péptidos y Proteínas de Señalización Intracelular
10.
J Dermatolog Treat ; 35(1): 2366535, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38945532

RESUMEN

Aim: Bullous pemphigoid induced by secukinumab in treatment of psoriasis is rare.Methods: We report a 49-year-old man with psoriasis who developed bullous pemphigoid during treatment with secukinumab.Results: Scattered tense vesicles with itching appeared all over the body after the fourth treatment. Bullous pemphigoid was confirmed by pathological examination and direct immunofluorescence. The patient was treated with topical corticosteroids, oral nicotinamide and minocycline hydrochloride. The lesions of bullous pemphigoid improved significantly after 7 days of treatment.Conclusions: Bullous pemphigoid is a rare adverse event following administration of secukinumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Penfigoide Ampolloso , Psoriasis , Humanos , Penfigoide Ampolloso/inducido químicamente , Penfigoide Ampolloso/tratamiento farmacológico , Penfigoide Ampolloso/patología , Penfigoide Ampolloso/diagnóstico , Masculino , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/efectos adversos , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Minociclina/efectos adversos , Niacinamida/análogos & derivados , Niacinamida/efectos adversos , Niacinamida/uso terapéutico , Fármacos Dermatológicos/efectos adversos , Resultado del Tratamiento
11.
J Appl Clin Med Phys ; 25(8): e14372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38709158

RESUMEN

BACKGROUND: Quality assurance (QA) of patient-specific treatment plans for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies and lacks sensitivity in the analysis of positional dose distribution data, leading to difficulties in accurately identifying reasons for plan verification failure. This issue complicates and impedes the efficiency of QA tasks. PURPOSE: The primary aim of this research is to utilize deep learning algorithms for the extraction of 3D dose distribution maps and the creation of a predictive model for error classification across multiple machine models, treatment methodologies, and tumor locations. METHOD: We devised five categories of validation plans (normal, gantry error, collimator error, couch error, and dose error), conforming to tolerance limits of different accuracy levels and employing 3D dose distribution data from a sample of 94 tumor patients. A CNN model was then constructed to predict the diverse error types, with predictions compared against the gamma pass rate (GPR) standard employing distinct thresholds (3%, 3 mm; 3%, 2 mm; 2%, 2 mm) to evaluate the model's performance. Furthermore, we appraised the model's robustness by assessing its functionality across diverse accelerators. RESULTS: The accuracy, precision, recall, and F1 scores of CNN model performance were 0.907, 0.925, 0.907, and 0.908, respectively. Meanwhile, the performance on another device is 0.900, 0.918, 0.900, and 0.898. In addition, compared to the GPR method, the CNN model achieved better results in predicting different types of errors. CONCLUSION: When juxtaposed with the GPR methodology, the CNN model exhibits superior predictive capability for classification in the validation of the radiation therapy plan on different devices. By using this model, the plan validation failures can be detected more rapidly and efficiently, minimizing the time required for QA tasks and serving as a valuable adjunct to overcome the constraints of the GPR method.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Radioterapia de Intensidad Modulada/métodos , Garantía de la Calidad de Atención de Salud/normas , Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación
13.
Nutrients ; 16(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38794655

RESUMEN

The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.


Asunto(s)
ADN Mitocondrial , Análisis de la Aleatorización Mendeliana , Telómero , Humanos , ADN Mitocondrial/genética , Telómero/metabolismo , Minerales/metabolismo , Envejecimiento/genética , Variaciones en el Número de Copia de ADN , Oligoelementos/sangre , Hierro/metabolismo , Hierro/sangre , Biomarcadores/sangre
14.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649802

RESUMEN

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Asunto(s)
Bleomicina , Senescencia Celular , Reparación del ADN , Recombinasa Rad51 , Bleomicina/efectos adversos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Humanos , Ratones , Reparación del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos
15.
Photochem Photobiol Sci ; 23(6): 1051-1065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684635

RESUMEN

As a member of the SMAD family, SMAD4 plays a crucial role in several cellular biological processes. However, its function in UVB radiation-induced keratinocyte damage is not yet clarified. Our study aims to provide mechanistic insight for the development of future UVB protective therapies and therapeutics involving SMAD4. HaCaT cells were treated with UVB, and the dose dependence and time dependence of UVB were measured. The cell function of UVB-treated HaCaT cells and the activity of epithelial-mesenchymal transition (EMT) after overexpression or silencing of SMAD4 was observed by flow cytometry, quantitative reverse transcription PCR (qRT-PCR) and Western Blots (WB). We found that a significant decrease in SMAD4 was observed in HaCaT cells induced by UVB. Our data confirm SMAD4 as a direct downstream target of miR-664. The down-regulation of SMAD4 preserved the viability of the UVB-treated HaCaT cells by inhibiting autophagy or apoptosis. Furthermore, the silencing of SMAD4 activated the EMT process in UVB-treated HaCaT cells. Down-regulation of SMAD4 plays a protective role in UVB-treated HaCaT cells via the activation of EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteína Smad4 , Humanos , Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de la radiación , Células HaCaT , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Queratinocitos/citología , Estrés Oxidativo/efectos de la radiación , Proteína Smad4/metabolismo , Rayos Ultravioleta
16.
Microorganisms ; 12(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38674681

RESUMEN

As a disease causing a global pandemic, the progression of symptoms to severe disease in patients with COVID-19 often has adverse outcomes, but research on the immunopathology of COVID-19 severe disease remains limited. In this study, we used mRNA-seq data from the peripheral blood of COVID-19 patients to identify six COVID-19 severe immune characteristic genes (FPR1, FCGR2A, TLR4, S100A12, CXCL1, and L TF), and found neutrophils to be the critical immune cells in COVID-19 severe disease. Subsequently, using scRNA-seq data from bronchoalveolar lavage fluid from COVID-19 patients, neutrophil subtypes highly expressing the S100A family were found to be located at the end of cellular differentiation and tended to release neutrophil extracellular traps. Finally, it was also found that alveolar macrophages, macrophages, and monocytes with a high expression of COVID-19 severe disease immune characteristic genes may influence neutrophils through intercellular ligand-receptor pairs to promote neutrophil extracellular trap release. This study provides immune characteristic genes, critical immune pathways, and immune cells in COVID-19 severe disease, explores intracellular immune transitions of critical immune cells and pit-induced intercellular communication of immune transitions, and provides new biomarkers and potential drug targets for the treatment of patients with COVID-19 severe disease.

17.
J Xray Sci Technol ; 32(3): 783-795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457140

RESUMEN

BACKGROUND: The study aimed to investigate anatomical changes in the neck region and evaluate their impact on dose distribution in patients with nasopharyngeal carcinoma (NPC) undergoing intensity modulated radiation therapy (IMRT). Additionally, the study sought to determine the optimal time for replanning during the course of treatment. METHODS: Twenty patients diagnosed with NPC underwent IMRT, with weekly pretreatment kV fan beam computed tomography (FBCT) scans in the treatment room. Metastasized lymph nodes in the neck region and organs at risk (OARs) were redelineation using the images from the FBCT scans. Subsequently, the original treatment plan (PLAN0) was replicated to each FBCT scan to generate new plans labeled as PLAN 1-6. The dose-volume histograms (DVH) of the new plans and the original plan were compared. One-way repeated measure ANOVA was utilized to establish threshold(s) at various time points. The presence of such threshold(s) would signify significant change(s), suggesting the need for replanning. RESULTS: Progressive volume reductions were observed over time in the neck region, the gross target volume for metastatic lymph nodes (GTVnd), as well as the submandibular glands and parotids. Compared to PLAN0, the mean dose (Dmean) of GTVnd-L significantly increased in PLAN5, while the minimum dose covering 95% of the volume (D95%) of PGTVnd-L showed a significant decrease from PLAN3 to PLAN6. Similarly, the Dmean of GTVnd-R significantly increased from PLAN4 to PLAN6, whereas the D95% of PGTVnd-R exhibited a significant decrease during the same period. Furthermore, the dose of bilateral parotid glands, bilateral submandibular glands, brainstem and spinal cord was gradually increased in the middle and late period of treatment. CONCLUSION: Significant anatomical and dosimetric changes were noted in both the target volumes and OARs. Considering the thresholds identified, it is imperative to undertake replanning at approximately 20 fractions. This measure ensures the delivery of adequate doses to target volumes while mitigating the risk of overdosing on OARs.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Cuello , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/patología , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/diagnóstico por imagen , Cuello/diagnóstico por imagen , Masculino , Radioterapia de Intensidad Modulada/métodos , Persona de Mediana Edad , Femenino , Adulto , Tomografía Computarizada por Rayos X/métodos , Carcinoma/diagnóstico por imagen , Carcinoma/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Órganos en Riesgo/diagnóstico por imagen , Radiometría/métodos
18.
CNS Neurosci Ther ; 30(3): e14682, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38499993

RESUMEN

BACKGROUND: Accumulating evidence supports the involvement of adaptive immunity in the development of radiation-induced brain injury (RIBI). Our previous work has emphasized the cytotoxic function of CD8+ T cells in RIBI. In this study, we aimed to investigate the presence and potential roles of cytotoxic CD4+ T cells (CD4+ CTLs) in RIBI to gain a more comprehensive understanding of adaptive immunity in this context. MAIN TEXT: Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed 3934 CD4+ T cells from the brain lesions of four RIBI patients and identified six subclusters within this population. A notable subset, the cytotoxic CD4+ T cells (CD4+ CTLs), was marked with high expression of cytotoxicity-related genes (NKG7, GZMH, GNLY, FGFBP2, and GZMB) and several chemokine and chemokine receptors (CCL5, CX3CR1, and CCL4L2). Through in-depth pseudotime analysis, which simulates the development of CD4+ T cells, we observed that the CD4+ CTLs exhibited signatures of terminal differentiation. Their functions were enriched in protein serine/threonine kinase activity, GTPase regulator activity, phosphoprotein phosphatase activity, and cysteine-type endopeptidase activity involved in the apoptotic signaling pathway. Correspondingly, mice subjected to gamma knife irradiation on the brain showed a time-dependent infiltration of CD4+ T cells, an increase of MHCII+ cells, and the existence of CD4+ CTLs in lesions, along with an elevation of apoptotic-related proteins. Finally, and most crucially, single-cell T-cell receptor sequencing (scTCR-seq) analysis at the patient level determined a large clonal expansion of CD4+ CTLs in lesion tissues of RIBI. Transcriptional factor-encoding genes TBX21, RORB, and EOMES showed positive correlations with the cytotoxic functions of CD4+ T cells, suggesting their potential to distinguish RIBI-related CD4+ CTLs from other subsets. CONCLUSION: The present study enriches the understanding of the transcriptional landscape of adaptive immune cells in RIBI patients. It provides the first description of a clonally expanded CD4+ CTL subset in RIBI lesions, which may illuminate new mechanisms in the development of RIBI and offer potential biomarkers or therapeutic targets for the disease.


Asunto(s)
Antineoplásicos , Lesiones Encefálicas , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Linfocitos T Citotóxicos , Encéfalo , Lesiones Encefálicas/metabolismo
19.
BMC Cancer ; 23(1): 1096, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950224

RESUMEN

OBJECTIVE: Stroke is a rare but fatal complication of advanced cancer with Trousseau syndrome, especially as initial symptoms. Here, we report the clinical characteristics, treatment, and prognosis of patients with non-small cell lung cancer (NSCLC) who initially presenting with acute multiple cerebral infarction. METHODS: The clinical characteristics, imaging, treatment, and oncological outcomes of 10 patients diagnosed with Trousseau syndrome and NSCLC between 2015 and 2021 at Guangdong Sanjiu Brain Hospital were retrospectively collected and analyzed. The clinical course of two typical cases were presented. RESULTS: All 10 patients with pathologically confirmed lung adenocarcinoma initially presented with neurological symptoms, including hemiplegic paralysis (7 patients, 70%), dizziness (5 patients, 50%), and unclear speech (3 patients, 30%). The median age was 63.5 years. Eight and two cases were stage III and IV, respectively, at the initial diagnosis. Five patients underwent driver gene testing, revealing three patients with EGFR-sensitive mutations, one patient with ALK fusion, and one patient with wild-type EGFR. All 10 patients received antiplatelet therapy, and six patients subsequently received anti-cancer treatment. The median overall survival of the patients was 8.5 months (95% confidence interval) and 1-year survival rate was 57.1%. Patients who received antitumor treatment, especially those harboring driver gene mutations and received tyrosine kinase inhibitors, had better neurological symptom recovery and superior oncological prognosis (median overall survival, not reached versus 7.4 months, p = 0.038). CONCLUSION: Trousseau syndrome, presenting as multiple cerebral infarctions, is a rare complication of lung adenocarcinoma. Both antiplatelet and antitumor treatment are recommended to achieve better neurological recovery and oncological prognosis in these patients.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Accidente Cerebrovascular , Humanos , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Retrospectivos , Mutación , Accidente Cerebrovascular/etiología , Receptores ErbB/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico
20.
Nutrients ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892520

RESUMEN

The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.


Asunto(s)
Dislipidemias , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana , Causalidad , Clostridiales , Dislipidemias/genética , Firmicutes , Lípidos , Estudio de Asociación del Genoma Completo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA