Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
2.
J Hazard Mater ; 471: 134262, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640678

RESUMEN

Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.


Asunto(s)
Brassica napus , Cadmio , Glutatión , Proteínas de Plantas , Proteómica , Cadmio/toxicidad , Brassica napus/efectos de los fármacos , Brassica napus/genética , Brassica napus/metabolismo , Glutatión/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Proteoma/efectos de los fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
3.
Plant Physiol Biochem ; 210: 108637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670031

RESUMEN

The MADS-box gene family is a transcription factor family that is widely expressed in plants. It controls secondary metabolic processes in plants and encourages the development of tissues like roots and flowers. However, the phylogenetic analysis and evolutionary model of MADS-box genes in Fagopyrum species has not been reported yet. This study identified the MADS-box genes of three buckwheat species at the whole genome level, and conducted systematic evolution and physicochemical analysis. The results showed that these genes can be divided into four subfamilies, with fragment duplication being the main way for the gene family expansion. During the domestication process from golden buckwheat to tartary buckwheat and the common buckwheat, the Ka/Ks ratio indicated that most members of the family experienced strong purification selection pressure, and with individual gene pairs experiencing positive selection. In addition, we combined the expression profile data of the MADS genes, mGWAS data, and WGCNA data to mine genes FdMADS28/48/50 that may be related to flavonoid metabolism. The results also showed that overexpression of FdMADS28 could increase rutin content by decreasing Kaempferol pathway content in hairy roots, and increase the resistance and growth of hairy roots to PEG and NaCl. This study systematically analyzed the evolutionary relationship of MADS-box genes in the buckwheat species, and elaborated on the expression patterns of MADS genes in different tissues under biotic and abiotic stresses, laying an important theoretical foundation for further elucidating their role in flavonoid metabolism.


Asunto(s)
Evolución Molecular , Fagopyrum , Flavonoides , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia
4.
Genome Biol ; 25(1): 61, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414075

RESUMEN

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Asunto(s)
Fagopyrum , Domesticación , Fagopyrum/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Filogenia
5.
Plant Biotechnol J ; 22(5): 1206-1223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38062934

RESUMEN

Rutin, a flavonoid rich in buckwheat, is important for human health and plant resistance to external stresses. The hydrolysis of rutin to quercetin underlies the bitter taste of Tartary buckwheat. In order to identify rutin hydrolysis genes, a 200 genotypes mini-core Tartary buckwheat germplasm resource was re-sequenced with 30-fold coverage depth. By combining the content of the intermediate metabolites of rutin metabolism with genome resequencing data, metabolite genome-wide association analyses (GWAS) eventually identified a glycosyl hydrolase gene FtGH1, which could hydrolyse rutin to quercetin. This function was validated both in Tartary buckwheat overexpression hairy roots and in vitro enzyme activity assays. Mutation of the two key active sites, which were determined by molecular docking and experimentally verified via overexpression in hairy roots and transient expression in tobacco leaves, exhibited abnormal subcellular localization, suggesting functional changes. Sequence analysis revealed that mutation of the FtGH1 promoter in accessions of two haplotypes might be necessary for enzymatic activity. Co-expression analysis and GWAS revealed that FtbHLH165 not only repressed FtGH1 expression, but also increased seed length. This work reveals a potential mechanism behind rutin metabolism, which should provide both theoretical support in the study of flavonoid metabolism and in the molecular breeding of Tartary buckwheat.


Asunto(s)
Fagopyrum , Rutina , Humanos , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Estudio de Asociación del Genoma Completo , Hidrólisis , Simulación del Acoplamiento Molecular , Multiómica , Flavonoides/metabolismo , Hidrolasas/metabolismo
6.
Cell Death Dis ; 14(12): 825, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092733

RESUMEN

Chronic hyperglycaemia is a devastating factor that causes diabetes-induced damage to the retina and kidney. However, the precise mechanism by which hyperglycaemia drives apoptotic cell death is incompletely known. Herein, we found that FOXD1, a FOX family transcription factor specifically expressed in the retina and kidney, regulated the transcription of BCL-2, a master regulator of cell survival. Intriguingly, the protein level of FOXD1, which responded negatively to hyperglycaemic conditions, was controlled by the TRIM21-mediated K48-linked polyubiquitination and subsequent proteasomal degradation. The TRIM21-FOXD1-BCL-2 signalling axis was notably active during diabetes-induced damage to murine retinal and renal tissues. Furthermore, we found that tartary buckwheat flavonoids effectively reversed the downregulation of FOXD1 protein expression and thus restored BCL-2 expression and facilitated the survival of retinal and renal tissues. In summary, we identified a transcription factor responsible for BCL-2 expression, a signalling axis (TRM21-FOXD1-BCL-2) underlying hyperglycaemia-triggered apoptosis, and a potential treatment for deleterious diabetic complications.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Animales , Ratones , Apoptosis/genética , Diabetes Mellitus/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Hiperglucemia/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética
8.
Plants (Basel) ; 12(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765484

RESUMEN

Characterisation of genetic diversity is critical to adequately exploit the potential of germplasm collections and identify important traits for breeding programs and sustainable crop improvement. Here, we characterised the phenotypic and genetic diversity of a global collection of the two cultivated buckwheat species Fagopyrum esculentum and Fagopyrum tataricum (190 and 51 accessions, respectively) using 37 agro-morphological traits and 24 SSR markers. A wide range of variation was observed in both species for most of the traits analysed. The two species differed significantly in most traits, with traits related to seeds and flowering contributing most to differentiation. The accessions of each species were divided into three major phenoclusters with no clear geographic clustering. At the molecular level, the polymorphic SSR markers were highly informative, with an average polymorphic information content (PIC) of over 0.65 in both species. Genetic diversity, as determined by Nei's expected heterozygosity (He), was high (He = 0.77 and He = 0.66, respectively) and differed significantly between species (p = 0.03) but was homogeneously distributed between regions, confirming the lack of genetic structure as determined by clustering approaches. The weak genetic structure revealed by the phenotypic and SSR data and the low fixation indices in both species suggested frequent seed exchange and extensive cultivation and selection. In addition, 93 and 140 significant (p < 0.05) marker-trait associations (MTAs) were identified in both species using a general linear model and a mixed linear model, most of which explained >20% of the phenotypic variation in associated traits. Core collections of 23 and 13 phenotypically and genetically diverse accessions, respectively, were developed for F. esculentum and F. tataricum. Overall, the data analysed provided deep insights into the agro-morphological and genetic diversity and genetic relationships among F. esculentum and F. tataricum accessions and pointed to future directions for genomics-based breeding programs and germplasm management.

9.
Front Plant Sci ; 14: 1163357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600205

RESUMEN

The GATA family of transcription factors is zinc finger DNA binding proteins involved in a variety of biological processes, including plant growth and development and response to biotic/abiotic stresses, and thus play an essential role in plant response to environmental changes. However, the GATA gene family of Sorghum (SbGATA) has not been systematically analyzed and reported yet. Herein, we used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 33 SbGATA genes identified. These SbGATA genes, distributed on 10 chromosomes, are classified into four subfamilies (I-IV) containing one pair of tandem duplications and nine pairs of segment duplications, which are more closely related to the monocot Brachypodium distachyon and Oryza sativa GATA genes. The physicochemical properties of the SbGATAs are significantly different among the subfamilies, while the protein structure and conserved protein motifs are highly conserved in the subfamilies. In addition, the transcription of SbGATAs is tissue-specific during Sorghum growth and development, which allows for functional diversity in response to stress and hormones. Collectively, our study lays a theoretical foundation for an in-depth analysis of the functions, mechanisms and evolutionary relationships of SbGATA during plant growth and development.

10.
Mol Plant ; 16(9): 1427-1444, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37649255

RESUMEN

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.


Asunto(s)
Productos Biológicos , Fagopyrum , Fagopyrum/genética , Metagenómica , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fertilidad
11.
BMC Biol ; 21(1): 176, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592232

RESUMEN

BACKGROUND: Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT: Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION: This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.


Asunto(s)
Lotus , Lotus/genética , Fitomejoramiento , Sitios Genéticos , Demografía
12.
Front Plant Sci ; 14: 1190090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143884
13.
PhytoKeys ; 220: 109-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251612

RESUMEN

In the context of the molecular phylogeny of Polygonaceae, the phylogenetic positions of most genera and their relationships have been resolved. However, the monotypic genus Harpagocarpus has never been included in any published molecular phylogenetic studies. In the present study, we adopt a two-step approach to confirm the phylogenetic placement of Harpagocarpus using two datasets: (1) a concatenated dataset of three chloroplast DNA (cpDNA) regions (matK, rbcL and trnL-F) for Polygonaceae and (2) a combined cpDNA dataset of five sequences (accD, matK, psbA-trnH, rbcL and trnL-F) for Fagopyrum. Our analyses confirm the previous hypothesis based on morphological, anatomical and palynological investigations that Harpagocarpus is congeneric with Fagopyrum and further reveal that H.snowdenii (≡ F.snowdenii) is sister to the woody buckwheat F.tibeticum. Within Fagopyrum, three highly supported clades were discovered and the first sectional classification was proposed to accommodate them: sect. Fagopyrum comprises the two domesticated common buckwheat (F.esculentum and F.tataricum) and their wild relatives (F.esculentumsubsp.ancestrale, F.homotropicum and F.dibotrys) which are characterised by having large corymbose inflorescences and achenes greatly exceeding the perianth; sect. Tibeticum, including F.snowdenii and F.tibeticum, is characterised by the achene having appurtenances along the ribs, greatly exceeding the perianth and the perianth accrescent in fruit; sect. Urophyllum contains all other species of which the achenes were completely enclosed in the perianth. This study is very helpful to understand the phylogeny of the Fagopyrum and sheds light on the future study of taxonomy, biogeography, diversification and character evolution of the genus.

14.
Plant Cell ; 35(8): 2773-2798, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119263

RESUMEN

Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Perfilación de la Expresión Génica , Virulencia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Resistencia a la Enfermedad/genética , Multiómica
15.
Sci Rep ; 13(1): 4897, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966186

RESUMEN

Diabetes is a common metabolic disorder that has become a major health problem worldwide. In this study, we investigated the role of rutin in attenuating diabetes and preventing diabetes-related colon lesions in mice potentially through regulation of gut microbiota. The rutin from tartary buckwheat as analyzed by HPLC was administered intragastrically to diabetic mice, and then the biochemical parameters, overall community structure and composition of gut microbiota in diabetic mice were assayed. The results showed that rutin lowered serum glucose and improved serum total cholesterol, low-density lipoprotein, high-density lipoprotein, triglyceride concentrations, tumor necrosis factor-α, interleukin-6, and serum insulin in diabetic mice. Notably, rutin obviously alleviated colon lesions in diabetic mice. Moreover, rutin also significantly regulated gut microbiota dysbiosis and enriched beneficial microbiota, such as Akkermansia (p < 0.05). Rutin selectively increased short-chain fatty acid producing bacteria, such as Alistipes (p < 0.05) and Roseburia (p < 0.05), and decreased the abundance of diabetes-related gut microbiota, such as Escherichia (p < 0.05) and Mucispirillum (p < 0.05). Our data suggested that rutin exerted an antidiabetic effect and alleviated colon lesions in diabetic mice possibly by regulating gut microbiota dysbiosis, which might be a potential mechanism through which rutin alleviates diabetes-related symptoms.


Asunto(s)
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Enfermedades Intestinales , Ratones , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Rutina/farmacología , Rutina/uso terapéutico , Disbiosis/tratamiento farmacológico , Bacterias , Colon , Ratones Endogámicos C57BL
16.
Plant Biotechnol J ; 21(1): 150-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148785

RESUMEN

Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.


Asunto(s)
Fagopyrum , Humanos , Fagopyrum/genética , Fagopyrum/metabolismo , Filogenia , Estudio de Asociación del Genoma Completo , Domesticación , Proteínas de Plantas/metabolismo , Semillas/genética , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas/genética
17.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361858

RESUMEN

ABFs play a key role in regulating plant osmotic stress. However, in Tartary buckwheat, data on the role of ABF genes in osmotic stress remain limited and its associated mechanism in osmoregulation remain nebulous. Herein, a novel ABF family in Tartary buckwheat, FtbZIP12, was cloned and characterized. FtbZIP12 is a transcriptional activator located in the nucleus; its expression is induced by NaCl, mannitol, and abscisic acid (ABA). Atopic expression of FtbZIP12 in Arabidopsis promoted seed germination, reduced damage to primary roots, and improved the tolerance of seedlings to osmotic stress. The quantitative realtime polymerase chain reaction (RT-qPCR) results showed that the expressions of the typical genes related to stress, the SOS pathway, and the proline synthesis pathway in Arabidopsis were significantly (p < 0.05) upregulated under osmotic stress. FtbZIP12 improved the osmotic pressure resistance by reducing the damage caused by reactive oxygen species to plants and maintained plant homeostasis by upregulating the expression of genes related to stress, osmotic regulation, and ion homeostasis. This study identified a key candidate gene for understanding the mechanism underlying osmotic-stress-regulated function in Tartary buckwheat, thereby providing a theoretical basis for improving its yield and quality.


Asunto(s)
Arabidopsis , Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Presión Osmótica , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Filogenia
18.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36293290

RESUMEN

GATA is a transcription factor that exerts a vital function in plant growth and development, physiological metabolism, and environmental responses. However, the GATA gene family has rarely been studied in Tartary buckwheat since the completion of its genome. This study used bioinformatics methods to identify GATA genes of Tartary buckwheat and to analyze their subfamily classification, structural composition, and developmental evolution, as well as to discuss the expression patterns of FtGATA genes in different subfamilies. The twenty-eight identified FtGATA genes in the Tartary buckwheat genome were divided into four subfamilies and distributed on eight chromosomes. One pair of tandem repeat genes and eight pairs of fragments were found in chromosome mapping. Spatiotemporal expression patterns of eight FtGATA genes in different subfamilies indicated that the FtGATA gene family has regulatory roles in tissue specificity, fruit development, abiotic stress, and hormonal responses. This study creates a theoretical and scientific foundation for further research on the evolutionary relationship and biological function of FtGATA.


Asunto(s)
Fagopyrum , Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Filogenia , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo
19.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142630

RESUMEN

We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat "Chuanqiao-2" under 150 mmol·L-1 salt (NaCl) stress was treated with 5 or 10 mmol·L-1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L-1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3'H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L-1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L-1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L-1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L-1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.


Asunto(s)
Fagopyrum , Antioxidantes/metabolismo , Clorofila A/metabolismo , Fagopyrum/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Proteínas de Plantas/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Agua/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-36016679

RESUMEN

Tartary buckwheat flavonoids (TBFs) exhibit diverse biological activities, with antioxidant, antidiabetes, anti-inflammatory, and cholesterol-lowering properties. In this study, we investigated the role of TBFs in attenuating glucose and lipid disturbances in diabetic mice and hence preventing the occurrence of diabetes-related colon lesions in mice by regulating the gut microbiota. The results showed that TBFs (1) reversed blood glucose levels and body weight changes; (2) improved levels of serum total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and fasting insulin; and (3) significantly reduced diabetes-related colon lesions in diabetic mice. In addition, TBFs also affected the diabetes-related imbalance of the gut microbiota and enriched beneficial microbiota, including Akkermansia and Prevotella. The TBF also selectively increased short-chain fatty acid-producing bacteria, including Roseburia and Odoribacter, and decreased the abundance of the diabetes-related gut microbiota, including Escherichia, Mucispirillum, and Bilophila. The correlation analysis indicated that TBFs improved metabolic parameters related to key communities of the gut microbiota. Our data suggested that TBFs alleviated glucose and lipid disturbances and improved colon lesions in diabetic mice, possibly by regulating the community composition of the gut microbiota. This regulation of the gut microbiota composition may explain the observed effects of TBFs to alleviate diabetes-related symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA