Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Am Chem Soc ; 146(11): 7858-7867, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457662

RESUMEN

Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.

2.
Adv Mater ; 35(49): e2306135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776317

RESUMEN

Layered inorganic material, with large-area interlayer surface and interface, provides an essential material platform for constructing new configuration of functional materials. Herein, a layered material pillared with nanoclusters realizing high temperature thermal insulation performance is demonstrated for the first time. Specifically, systematic synchrotron radiation spectroscopy and finite element calculation analysis show that ZrOx nanoclusters served as "pillars" to effectively produce porous structures with enough boundary defect while maintaining the layered structure, thereby significantly reducing solid state thermal conductivity (≈0.32 W m-1  K-1 , 298-573 K). Moreover, the layered inorganic silicate material assembled aerogel also exhibits superior thermal insulation performance from room temperature (0.034 W m-1  K-1 , 298 K, air conditions) to high temperature (0.187 W m-1  K-1 , 1073 K, air conditions) and largely enhanced compressive strength (42 kPa at 80% compression), which is the best layered material-based aerogel that has achieved synergistic improvement in thermal and mechanical performance so far. Layered inorganic silicate aerogel pillared by nanoclusters will pave a new avenue for the design of advanced thermal insulation materials under extreme conditions.

3.
J Am Chem Soc ; 144(48): 22018-22025, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417900

RESUMEN

Platinum reaches considerable activity and stability as an electrocatalyst but is not always capable of maintaining such performance under CO poisoning, particularly in CO residual fuels for practical proton-exchange membrane fuel cells (PEMFCs). In this work, we report that surface anions including a series of nonmetal elements on Pt nanoparticles result in outstanding CO tolerance for electrocatalysts in fuel cells. In particular, phosphorus surface-anion-modified Pt (denoted as P-Pt) possesses more than 10-fold enhancement of CO tolerance (only 8.4% decay) than commercial Pt/C, which can serve as a robust electrocatalyst both in CO poisoning half cells and full cells. Moreover, the general mechanism and principle were proposed, stating that surface anions should be selected preferentially to offer electron feedback to downshift the d-band center for the Pt surface, successfully weakening CO adsorption and leading to high-tolerance capability. We anticipate that surface anions on a Pt surface can bring robust electrocatalysts for practical PEMFCs and offer novel insights for high-performance Pt-based electrocatalysts.

4.
Nano Lett ; 22(16): 6622-6630, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35931416

RESUMEN

Electron transfer plays an important role in determining the energy conversion efficiency of energy devices. Nitrogen-coordinated single metal sites (M-N4) materials as electrocatalysts have exhibited great potential in devices. However, there are still great difficulties in how to directionally manipulate electron transfer in M-N4 catalysts for higher efficiency. Herein, we demonstrated the mechanism of electron transfer being affected by energy level structure based on classical iron phthalocyanine (FePc) molecule/carbon models and proposed an energy level engineering strategy to manipulate electron transfer, preparing high-performance ORR catalysts. Engineering molecular energy level via modulating FePc molecular structure with nitro induces a strong interfacial electronic coupling and efficient charge transfer from carbon to FePc-ß-NO2 molecule. Consequently, the assembled zinc-air battery exhibits ultrahigh performance which is superior to most of M-N4 catalysts. Energy level engineering provides a universal approach for directionally manipulating electron transfer, bringing a new concept to design efficient and stable M-N4 electrocatalyst.

5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34433670

RESUMEN

Pt-based alloy catalysts may promise considerable mass activity (MA) for oxygen reduction but are generally unsustainable over long-term cycles, particularly in practical proton exchange membrane fuel cells (PEMFCs). Herein, we report a series of Pt-based intermetallic compounds (Pt3Co, PtCo, and Pt3Ti) enclosed by ultrathin Pt skin with an average particle size down to about 2.3 nm, which deliver outstanding cyclic MA and durability for oxygen reduction. By breaking size limitation during ordered atomic transformation in Pt alloy systems, the MA and durability of subsize Pt-based intermetallic compounds can be simultaneously optimized. The subsize scale was also found to enhance the stability of the membrane electrode through preventing the poisoning of catalysts by ionomers in humid fuel-cell conditions. We anticipate that subsize Pt-based intermetallic compounds set a good example for the rational design of high-performance oxygen reduction electrocatalysts for PEMFCs. Furthermore, the prevention of ionomer poisoning was identified as the critical parameter for assembling robust commercial membrane electrodes in PEMFCs.

6.
Adv Mater ; 32(47): e2003251, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33073405

RESUMEN

Metal-air fuel cells with high energy density, eco-friendliness, and low cost bring significantly high security to future power systems. However, the impending challenges of low power density and high-current-density stability limit their widespread applications. In this study, an ultrahigh-power-density Zn-air fuel cell with robust stability is highlighted. Benefiting from the water-resistance effect of the confined nanopores, the highly active cobalt cluster electrocatalysts reside in specific nanopores and possess stable triple-phase reaction areas, leading to the synergistic optimization of electron conduction, oxygen gas diffusion, and ion transport for electrocatalysis. As a result, the as-established Zn-air fuel cell shows the best stability under high-current-density discharging (>90 h at 100 mA cm-2 ) and superior power density (peak power density: >300 mW cm-2 , specific power: 500 Wgcat -1 ) compared to most reported non-noble-metal electrocatalysts. The findings will provide new insights in the rational design of electrocatalysts for advanced metal-air fuel cell systems.

7.
Nano Lett ; 20(8): 6097-6103, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32628023

RESUMEN

In this study, we highlight that surface nitrogen-injection engineering brings a high formation rate for CO2 reduction to formate, which is high level among the reported electrocatalysts. Surface nitrogen-injection engineering can increase the amounts of active sites and optimize the electronic structure simultaneously. Taking an example of SnS2 precursors, the final-obtained surface N-enriched Sn(S) nanosheets (denoted as N-Sn(S) nanosheets) exhibit a 5-fold of current density and 2.45-fold of Faradaic efficiency than pristine SnS2 derived Sn(S) nanosheets (denoted as Sn(S) nanosheets). On account of high activity and selectivity, the formation rate of formate is 14 times than that of pristine samples and reaches up to 1358 µmol h-1 cm-2. Moreover, this strategy is proven to be general to other metal sulfides, such as CuS and In2S3. We anticipate that surface nitrogen-injection engineering offers new avenues to rational design of advanced electrocatalysts for CO2 reduction reaction.

8.
Proc Natl Acad Sci U S A ; 116(14): 6635-6640, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30872473

RESUMEN

Electrocatalytic N2 reduction reaction (NRR) into ammonia (NH3), especially if driven by renewable energy, represents a potentially clean and sustainable strategy for replacing traditional Haber-Bosch process and dealing with climate change effect. However, electrocatalytic NRR process under ambient conditions often suffers from low Faradaic efficiency and high overpotential. Developing newly regulative methods for highly efficient NRR electrocatalysts is of great significance for NH3 synthesis. Here, we propose an interfacial engineering strategy for designing a class of strongly coupled hybrid materials as highly active electrocatalysts for catalytic N2 fixation. X-ray absorption near-edge spectroscopy (XANES) spectra confirm the successful construction of strong bridging bonds (Co-N/S-C) at the interface between CoS x nanoparticles and NS-G (nitrogen- and sulfur-doped reduced graphene). These bridging bonds can accelerate the reaction kinetics by acting as an electron transport channel, enabling electrocatalytic NRR at a low overpotential. As expected, CoS2/NS-G hybrids show superior NRR activity with a high NH3 Faradaic efficiency of 25.9% at -0.05 V versus reversible hydrogen electrode (RHE). Moreover, this strategy is general and can be extended to a series of other strongly coupled metal sulfide hybrids. This work provides an approach to design advanced materials for ammonia production.

9.
Adv Mater ; 31(15): e1807468, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30785222

RESUMEN

Synergistic improvements in the electrical conductivity and catalytic activity for the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) are of paramount importance for rechargeable metal-air batteries. In this study, one-nanometer-scale ultrathin cobalt oxide (CoOx ) layers are fabricated on a conducting substrate (i.e., a metallic Co/N-doped graphene substrate) to achieve superior bifunctional activity in both the ORR and OER and ultrahigh output power for flexible Zn-air batteries. Specifically, at the atomic scale, the ultrathin CoOx layers effectively accelerate electron conduction and provide abundant active sites. X-ray absorption spectroscopy reveals that the metallic Co/N-doped graphene substrate contributes to electron transfer toward the ultrathin CoOx layer, which is beneficial for the electrocatalytic process. The as-obtained electrocatalyst exhibits ultrahigh electrochemical activity with a positive half-wave potential of 0.896 V for ORR and a low overpotential of 370 mV at 10 mA cm-2 for OER. The flexible Zn-air battery built with this catalyst exhibits an ultrahigh specific power of 300 W gcat -1 , which is essential for portable devices. This work provides a new design pathway for electrocatalysts for high-performance rechargeable metal-air battery systems.

10.
Molecules ; 23(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545085

RESUMEN

Graphene combined with fractal structures would probably be a promising candidate design of an antenna for a wireless communication system. However, the thermal transport properties of fractal graphene, which would influence the properties of wireless communication systems, are unclear. In this paper, the thermal transport properties of graphene with a Sierpinski fractal structure were investigated via the reverse non-equilibrium molecular dynamics simulation method. Simulation results indicated that the thermal conductivity of graphene with fractal defects decreased from 157.62 to 19.60 (W m-1 K-1) as the fractal level increased. Furthermore, visual display and statistical results of fractal graphene atomic heat flux revealed that with fractal levels increasing, the real heat flux paths twisted, and the angle distributions of atomic heat flux vectors enlarged from about (-30°, 30°) to about (-45°, 45°). In fact, the fractal structures decreased the real heat flow areas and extended the real heat flux paths, and enhanced the phonon scattering in the defect edges of the fractal graphene. Analyses of fractal graphene thermal transport characters in our work indicated that the heat transfer properties of fractal graphene dropped greatly as fractal levels increased, which would provide effective guidance to the design of antennae based on fractal graphene.


Asunto(s)
Grafito , Simulación de Dinámica Molecular , Nanoestructuras , Fractales , Grafito/química , Modelos Químicos , Nanoestructuras/química , Conductividad Térmica
11.
Angew Chem Int Ed Engl ; 57(47): 15471-15475, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30216619

RESUMEN

Fluorine-anion surface engineering has now been used to activate catalytic active species, representing a completely new way of reconstruction toward oxygen evolution reaction (OER) active species. The electronegativity of the fluorine anion is the strongest so that it will be much easier to form weak metal-fluorine bonds with stronger ionicity, contributing to the dynamic migration of fluorine anions and finally enriching on the surface of both cobalt-based oxide/oxyhydroxide. Surface enrichment of fluorine anions endows more hydrophilic surface character for accelerating the key process of oxygen-related intermediate adsorption. Combining with an obviously improved electron transfer capacity, the F-CoOOH/NF catalyst exhibits a greatly enhanced OER activity (270 mV at 10 mA cm-2 ) and reaction kinetics (54 mV dec-1 ) in alkaline medium. Surface anion engineering introduces a new concept for rational design advanced OER catalysts for energy conversion system.

12.
Adv Mater ; 29(30)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28598013

RESUMEN

Developing non-noble-metal electrocatalysts with high activity and low cost for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for improving the generation of H2 fuel by electrocatalytic water-splitting. This study puts forward a new N-anion-decorated Ni3 S2 material synthesized by a simple one-step calcination route, acting as a superior bifunctional electrocatalyst for the OER/HER for the first time. The introduction of N anions significantly modifies the morphology and electronic structure of Ni3 S2 , bringing high surface active sites exposure, enhanced electrical conductivity, optimal HER Gibbs free-energy (ΔGH* ), and water adsorption energy change (ΔGH2O* ). Remarkably, the obtained N-Ni3 S2 /NF 3D electrode exhibits extremely low overpotentials of 330 and 110 mV to reach a current density of 100 and 10 mA cm-2 for the OER and HER in 1.0 m KOH, respectively. Moreover, an overall water-splitting device comprising this electrode delivers a current density of 10 mA cm-2 at a very low cell voltage of 1.48 V. Our finding introduces a new way to design advanced bifunctional catalysts for water splitting.

13.
Angew Chem Int Ed Engl ; 56(25): 7121-7125, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28523861

RESUMEN

The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal-air batteries. Rational design of highly efficient non-noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large-scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N-decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co-N-C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half-wave potential and high limiting current density in alkaline medium.

14.
Angew Chem Int Ed Engl ; 56(2): 610-614, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27910196

RESUMEN

Rational design of non-noble materials as highly efficient, economical, and durable bifunctional catalysts for oxygen evolution and reduction reactions (OER/ORR) is currently a critical obstacle for rechargeable metal-air batteries. A new route involving S was developed to achieve atomic dispersion of Fe-Nx species on N and S co-decorated hierarchical carbon layers, resulting in single-atom bifunctional OER/ORR catalysts for the first time. The abundant atomically dispersed Fe-Nx species are highly catalytically active, the hierarchical structure offers more opportunities for active sites, and the electrical conductivity is greatly improved. The obtained electrocatalyst exhibits higher limiting current density and a more positive half-wave potential for ORR, as well as a lower overpotential for OER under alkaline conditions. Moreover, a rechargeable Zn-air battery device comprising this hybrid catalyst shows superior performance compared to Pt/C catalyst. This work will open a new avenue to design advanced bifunctional catalysts for reversible energy storage and conversion devices.

15.
ACS Appl Mater Interfaces ; 8(26): 16718-26, 2016 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27294363

RESUMEN

Ultrathin Li4Ti5O12 (LTO) nanosheets with ordered microstructures were prepared via a polyether-assisted hydrothermal process. Pluronic P123, a polyether, can impede the growth of Li2TiO3 in the precursor and also act as a structure-directing agent to facilitate the (Li1.81H0.19)Ti2O5·2H2O precursor to form the LTO nanosheets with the ordered microstructure. Moreover, the addition of P123 can suppress the stacking of LTO nanosheets during calcining of the precursor, and the thickness of the nanosheets can be controlled to be about 4 nm. The microstructure of the as-prepared ultrathin and ordered nanosheets is helpful for Li(+) or Na(+) diffusion and charge transfer through the particles. Therefore, the ultrathin P123-assisted LTO (P-LTO) nanosheets show a rate capability much higher than that of the LTO sample without P123 in a Li battery with over 130 mAh g(-1) of capacity remaining at the 64C rate. For intercalation of larger size Na(+) ions, the P-LTO still exhibits a capacity of 115 mAh g(-1) at a current rate of 10 C and a capacity retention of 96% after 400 cycles.

16.
Adv Mater ; 28(34): 7527-32, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27309389

RESUMEN

Phase-transformation engineering is successfully applied in designing an alkaline hydrogen evolution reaction (HER) electrocatalyst. Benefiting from phase-transformation engineering, which endows higher electrical conductivity, ideal water adsorption energy, and faster transformation efficiency of Hads into hydrogen, cubic-phase CoSe2 realizes an enhanced electrocatalytic activity for HER under alkaline conditions.

17.
Adv Mater ; 28(17): 3326-32, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26928560

RESUMEN

Dual electrical-behavior regulation on electrocatalysts is proven to be an effective strategy for realizing enhanced electrochemical water oxidation. Electrical-behavior regulation opens up a promising avenue to design advanced electrocatalysts.

18.
Angew Chem Int Ed Engl ; 55(7): 2488-92, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26757358

RESUMEN

Developing highly active catalysts for the oxygen evolution reaction (OER) is of paramount importance for designing various renewable energy storage and conversion devices. Herein, we report the synthesis of a category of Co-Pi analogue, namely cobalt-based borate (Co-Bi ) ultrathin nanosheets/graphene hybrid by a room-temperature synthesis approach. Benefiting from the high surface active sites exposure yield, enhanced electron transfer capacity, and strong synergetic coupled effect, this Co-Bi NS/G hybrid shows high catalytic activity with current density of 10 mA cm(-2) at overpotential of 290 mV and Tafel slope of 53 mV dec(-1) in alkaline medium. Moreover, Co-Bi NS/G electrocatalysts also exhibit promising performance under neutral conditions, with a low onset potential of 235 mV and high current density of 14.4 mA cm(-2) at 1.8 V, which is the best OER performance among well-developed Co-based OER electrocatalysts to date. Our finding paves a way to develop highly active OER electrocatalysts.

19.
Angew Chem Int Ed Engl ; 55(5): 1710-3, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26695560

RESUMEN

Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA