Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Hereditas ; 161(1): 15, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702800

RESUMEN

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Asunto(s)
Proteínas de Plantas , Proteómica , Rhododendron , Rayos Ultravioleta , Acetilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/fisiología , Estrés Fisiológico , Metabolómica , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica de las Plantas , Almidón/metabolismo , Fotosíntesis
2.
Biol Direct ; 19(1): 40, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807240

RESUMEN

Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.


Asunto(s)
Hidroxibenzoatos , Reguladores del Crecimiento de las Plantas , Rhododendron , Rayos Ultravioleta , Hidroxibenzoatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Rhododendron/metabolismo , Estrés Fisiológico , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Proteómica , Transducción de Señal/efectos de la radiación , Metabolómica/métodos , Fosforilación
3.
Biology (Basel) ; 13(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785830

RESUMEN

Potassium deficiency is one of the important factors restricting cucumber growth and development. This experiment mainly explored the effect of Bacillus subtilis (B. subtilis) on cucumber seedling growth and the photosynthetic system under different potassium levels, and the rhizosphere bacteria (PGPR) that promote plant growth were used to solubilize potassium in soil, providing theoretical support for a further investigation of the effect of biological bacteria fertilizer on cucumber growth and potassium absorption. "Xinjin No. 4" was used as the test material for the pot experiment, and a two-factor experiment was designed. The first factor was potassium application treatment, and the second factor was bacterial application treatment. The effects of different treatments on cucumber seedling growth, photosynthetic characteristics, root morphology, and chlorophyll fluorescence parameters were studied. The results showed that potassium and B. subtilis had obvious promotion effects on the cucumber seedling growth and the photosynthesis of leaves. Compared with the blank control, the B. subtilis treatment had obvious effects on the cucumber seedling height, stem diameter, leaf area, total root length, total root surface area, total root volume, branch number, crossing number, gs, WUE, Ci, and A; the dry weight of the shoot and root increased significantly (p ≤ 0.05). Potassium application could significantly promote cucumber growth, and the effect of B. subtilis and potassium application was greater than that of potassium application alone, and the best effect was when 0.2 g/pot and B. subtilis were applied. In conclusion, potassium combined with B. subtilis could enhance the photosynthesis of cucumber leaves and promote the growth of cucumber.

4.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791294

RESUMEN

With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth's surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance.


Asunto(s)
Ácido Abscísico , Flavonoides , Regulación de la Expresión Génica de las Plantas , Rhododendron , Rayos Ultravioleta , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Flavonoides/metabolismo , Rhododendron/metabolismo , Rhododendron/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Clorofila/metabolismo
5.
Plants (Basel) ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674471

RESUMEN

Rhododendron chrysanthum (R. chrysanthum) development is hampered by UV-B sunlight because it damages the photosynthetic system and encourages the buildup of carotenoids. Nevertheless, it is still unclear how R. chrysanthum repairs the photosynthetic system to encourage the formation of carotenoid pigments. The carotenoid and abscisic acid (ABA) concentrations of the R. chrysanthum were ascertained in this investigation. Following UV-B stress, the level of carotenoids was markedly increased, and there was a strong correlation between carotenoids and ABA. The modifications of R. chrysanthum's OJIP transient curves were examined in order to verify the regulatory effect of ABA on carotenoid accumulation. It was discovered that external application of ABA lessened the degree of damage on the donor side and lessened the damage caused by UV-B stress on R. chrysanthum. Additionally, integrated metabolomics and transcriptomics were used to examine the changes in differentially expressed genes (DEGs) and differential metabolites (DMs) in R. chrysanthum in order to have a better understanding of the role that ABA plays in carotenoid accumulation. The findings indicated that the majority of DEGs were connected to carotenoid accumulation and ABA signaling sensing. To sum up, we proposed a method for R. chrysanthum carotenoid accumulation. UV-B stress activates ABA production, which then interacts with transcription factors to limit photosynthesis and accumulate carotenoids, such as MYB-enhanced carotenoid biosynthesis. This study showed that R. chrysanthum's damage from UV-B exposure was lessened by carotenoid accumulation, and it also offered helpful suggestions for raising the carotenoid content of plants.

6.
Biology (Basel) ; 13(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38666823

RESUMEN

Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results.

7.
J Fungi (Basel) ; 10(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38392808

RESUMEN

The symbiosis between endophytic fungi and plants can promote the absorption of potassium, nitrogen, phosphorus, and other nutrients by plants. Phosphorus is one of the indispensable nutrient elements for plant growth and development. However, the content of available phosphorus in soil is very low, which limits the growth of plants. Phosphorus-soluble microorganisms can improve the utilization rate of insoluble phosphorus. In this study, Talaromyces verruculosus (T. verruculosus), a potential phosphorus-soluble fungus, was isolated from Acer truncatum, a plant with strong stress resistance, and its phosphorus-soluble ability in relation to cucumber seedlings under different treatment conditions was determined. In addition, the morphological, physiological, and biochemical indexes of the cucumber seedlings were assessed. The results show that T. verruculosus could solubilize tricalcium phosphate (TCP) and lecithin, and the solubilization effect of lecithin was higher than that of TCP. After the application of T. verruclosus, the leaf photosynthetic index increased significantly. The photosynthetic system damage caused by low phosphorus stress was alleviated, and the root morphological indexes of cucumber seedlings were increased. The plant height, stem diameter, and leaf area of cucumber seedlings treated with T. verruculosus were also significantly higher than those without treatment. Therefore, it was shown that T. verruculosus is a beneficial endophytic fungus that can promote plant growth and improve plant stress resistance. This study will provide a useful reference for further research on endophytic fungi to promote growth and improve plant stress resistance.

8.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279235

RESUMEN

The presence of the ozone hole increases the amount of UV radiation reaching a plant's surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-ß-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism.


Asunto(s)
Glucosa , Hidroxibenzoatos , Alcohol Feniletílico , Fenilpropionatos , Rhododendron , Ácido Abscísico/metabolismo , Rhododendron/genética , Ácidos Cumáricos , Rayos Ultravioleta
9.
Biomolecules ; 13(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136571

RESUMEN

The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.


Asunto(s)
Rhododendron , Cromatografía Liquida , Espectrometría de Masas en Tándem , Rayos Ultravioleta , Plantas
10.
Genes (Basel) ; 14(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38002965

RESUMEN

Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth and development of plants. MYBs play an essential role in the processes of plant responses to abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome technologies have resulted in further and more reliable data for understanding the UV-B response mechanism in plants. In this research, the transcriptome and acetylated proteome were used to analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 differentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares the same function with ATMYB44. We further constructed the hormone signaling pathway involved in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum. Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of proteins and genes were inconsistent, which is related to post-translational modifications of proteins. In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.


Asunto(s)
Rhododendron , Rhododendron/genética , Proteoma/genética , Multiómica , Perfilación de la Expresión Génica , Transcriptoma/genética
11.
Sci Rep ; 13(1): 12345, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524898

RESUMEN

Phosphorus (Pi) deficiency is a major factor of limiting plant growth. Using Phosphate-solubilizing microorganism (PSM) in synergy with plant root system which supply soluble Pi to plants is an environmentally friendly and efficient way to utilize Pi. Trichoderma viride (T. viride) is a biocontrol agent which able to solubilize soil nutrients, but little is known about its Pi solubilizing properties. The study used T. viride to inoculate Melilotus officinalis (M. officinalis) under different Pi levels and in order to investigate the effect on Pi absorption and growth of seedlings. The results found that T. viride could not only solubilizate insoluble inorganic Pi but also mineralize insoluble organic Pi. In addition, the ability of mineralization to insoluble organic Pi is more stronger. Under different Pi levels, inoculation of T. viride showed that promoted the growth of aboveground parts of seedlings and regulated the morphology of roots, thus increasing the dry weight of seedlings. The effect of T. viride on seedling growth was also reflected the increasing of chlorophyll fluorescence parameters and photosynthetic pigment content. Moreover, compared to the uninoculated treatments, inoculation of T. viride also enhanced Pi content in seedlings. Thus, the T. viride was a beneficial fungus for synergistic the plant Pi uptake and growth.


Asunto(s)
Melilotus , Fósforo Dietético , Trichoderma , Fósforo
12.
Genes (Basel) ; 14(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372333

RESUMEN

The influence of UV-B stress on the growth, development, and metabolism of alpine plants, such as the damage to DNA macromolecules, the decline in photosynthetic rate, and changes in growth, development, and morphology cannot be ignored. As an endogenous signal molecule, ABA demonstrates a wide range of responses to UV-B radiation, low temperature, drought, and other stresses. The typical effect of ABA on leaves is to reduce the loss of transpiration by closing the stomata, which helps plants resist abiotic and biological stress. The Changbai Mountains have a harsh environment, with low temperatures and thin air, so Rhododendron chrysanthum (R. chrysanthum) seedlings growing in the Changbai Mountains can be an important research object. In this study, a combination of physiological, phosphorylated proteomic, and transcriptomic approaches was used to investigate the molecular mechanisms by which abiotic stress leads to the phosphorylation of proteins in the ABA signaling pathway, and thereby mitigates UV-B radiation to R. chrysanthum. The experimental results show that a total of 12,289 differentially expressed genes and 109 differentially phosphorylated proteins were detected after UV-B stress in R. chrysanthum, mainly concentrated in plant hormone signaling pathways. Plants were treated with ABA prior to exposure to UV-B stress, and the results showed that ABA mitigated stomatal changes in plants, thus confirming the key role of endogenous ABA in plant adaptation to UV-B. We present a model that suggests a multifaceted R. chrysanthum response to UV-B stress, providing a theoretical basis for further elaboration of the mechanism of ABA signal transduction regulating stomata to resist UV-B radiation.


Asunto(s)
Rhododendron , Rhododendron/genética , Rhododendron/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteómica , Estomas de Plantas/metabolismo , Plantas/genética , Transducción de Señal , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
13.
Front Plant Sci ; 14: 1146663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895874

RESUMEN

Introduction: Cold stress is a global common problem that significantly limits plant development and geographical distribution. Plants respond to low temperature stress by evolving interrelated regulatory pathways to respond and adapt to their environment in a timely manner. Rhodoendron chrysanthum Pall. (R. chrysanthum) is a perennial evergreen dwarf shrub used for adornment and medicine that thrives in the Changbai Mountains at high elevations and subfreezing conditions. Methods: In this study, a comprehensive investigation of cold tolerance (4°C, 12h) in R. chrysanthum leaves under cold using physiological combined with transcriptomic and proteomic approaches. Results: There were 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs) in the low temperature (LT) and normal treatment (Control). Integrated transcriptomic and proteomic analyses showed that MAPK cascade, ABA biosynthesis and signaling, plant-pathogen interaction, linoleic acid metabolism and glycerophospholipid metabolism were significantly enriched in response to cold stress of R. chrysanthum leaves. Discussion: We analyzed the involvement of ABA biosynthesis and signaling, MAPK cascade, and Ca2+ signaling, that may jointly respond to stomatal closure, chlorophyll degradation, and ROS homeostasis under low temperature stress. These results propose an integrated regulatory network of ABA, MAPK cascade and Ca2+ signaling comodulating the cold stress in R. chrysanthum, which will provide some insights to elucidate the molecular mechanisms of cold tolerance in plants.

14.
Cells ; 12(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36766818

RESUMEN

Rhododendron chrysanthum (Rhododendron chrysanthum Pall.), an alpine plant, has developed UV-B resistance mechanisms and has grown to be an important plant resource with the responsive capacity of UV-B stress. Our study uses acetylated proteomics and proteome analysis, together with physiological measurement, to show the Rhododendron chrysanthum seedling's reaction to UV-B stress. Following a 2-day, 8-h radiation therapy, 807 significantly altered proteins and 685 significantly altered acetylated proteins were discovered. Significantly altered proteins and acetylated proteins, according to COG analysis, were mostly engaged in post-translational modification, protein turnover, and chaperone under UV-B stress. It indicates that protein acetylation modification plays an important role in plant resistance to UV-B. The experimental results show that photosynthesis was inhibited under UV-B stress, but some photosynthetic proteins will undergo acetylation modification, which can alleviate the UV-B damage of plants to a certain extent. These results will serve as the basis for more research into the intricate molecular mechanisms underlying plant UV-B adaptation.


Asunto(s)
Complejo de Proteína del Fotosistema II , Rhododendron , Complejo de Proteína del Fotosistema II/metabolismo , Rayos Ultravioleta , Rhododendron/metabolismo , Proteómica , Fotosíntesis , Plantas/metabolismo
15.
Mol Biol Rep ; 50(4): 3607-3616, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36418773

RESUMEN

BACKGROUND: Cold stress is one of the abiotic stresses that affect plant growth and development, as well as life and geographical distribution important. For researching how plants react to low temperature stress, Rhododendron chrysanthum Pall. (R. chrysanthum) growing in Changbai Mountains of China is an essential study subject. METHODS AND RESULTS: R. chrysanthum was cold-treated at 4 °C for 12 h (cold-stress group-CS, and controls-CK), combined with transcriptomics (RNA-seq) and proteomics (iTRAQ) techniques, to investigate the response mechanisms of R. chrysanthum response to cold stress. Cold stress resulted in the discovery of 12,261 differentially expressed genes (DEGs) and 360 differentially expressed proteins (DEPs). Correlation of proteomic and transcriptome data, proteome regulation of distinct subcellular localization, and gene/protein functional groupings are all part of the investigation. CONCLUSIONS: The combined analysis showed that 6378 DEPs matched the corresponding DEGs when the control was compared with the cold-treated samples (CK vs CS). The analysis identified 54 DEGs-DEPs associated with cold stress. cold-tolerant DEGs-DEPs were enriched with hydrolase activity, acting on glycosyl bonds, carbon-oxygen lyase activity and ferric iron binding. Seven potential DEGs-DEPs with significant involvement in the cold stress response were identified by co-expression network analysis. These findings identify the synergistic effect of DEGs-DEPs as the key to improve the cold tolerance of R. chrysanthum and provide a theoretical basis for further studies on its cold resistance subsequently.


Asunto(s)
Rhododendron , Transcriptoma , Transcriptoma/genética , Respuesta al Choque por Frío/genética , Rhododendron/genética , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Frío , Regulación de la Expresión Génica de las Plantas/genética
16.
Plants (Basel) ; 11(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36297754

RESUMEN

Under natural environmental conditions, excess UV-B stress can cause serious injuries to plants. However, domestication conditions may allow the plant to better cope with the upcoming UV-B stress. The leaves of Rhododendron chrysanthum are an evergreen plant that grows at low temperatures and high altitudes in the Changbai Mountains, where the harsh ecological environment gives it different UV resistance properties. Metabolites in R. chrysanthum have a significant impact on UV-B resistance, but there are few studies on the dynamics of their material composition and gene expression levels. We used a combination of gas chromatography time-of-flight mass spectrometry and transcriptomics to analyze domesticated and undomesticated R. chrysanthum under UV-B radiation. A total of 404 metabolites were identified, of which amino acids were significantly higher and carbohydrates were significantly lower in domesticated R. chrysanthum. Transcript profiles throughout R. chrysanthum under UV-B were constructed and analyzed, with an emphasis on sugar and amino acid metabolism. The transcript levels of genes associated with sucrose and starch metabolism during UV-B resistance in R. chrysanthum showed a consistent trend with metabolite content, while amino acid metabolism was the opposite. We used metabolomics and transcriptomics approaches to obtain dynamic changes in metabolite and gene levels during UV-B resistance in R. chrysanthum. These results will provide some insights to elucidate the molecular mechanisms of UV tolerance in plants.

17.
BMC Plant Biol ; 22(1): 104, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255815

RESUMEN

BACKGROUND: Small interfering RNAs (siRNAs) target homologous genomic DNA sequences for cytosine methylation, known as RNA-directed DNA methylation (RdDM), plays an important role in transposon control and regulation of gene expression in plants. Repressor of silencing 1 (ROS1) can negatively regulate the RdDM pathway. RESULTS: In this paper, we investigated the molecular mechanisms by which an upstream regulator ACD6 in the salicylic acid (SA) defense pathway, an ABA pathway-related gene ACO3, and GSTF14, an endogenous gene of the glutathione S-transferase superfamily, were induced by various abiotic stresses. The results demonstrated that abiotic stresses, including water deficit, cold, and salt stresses, induced demethylation of the repeats in the promoters of ACD6, ACO3, and GSTF14 and transcriptionally activated their expression. Furthermore, our results revealed that ROS1-mediated DNA demethylation plays an important role in the process of transcriptional activation of ACD6 and GSTF14 when Arabidopsis plants are subjected to cold stress. CONCLUSIONS: This study revealed that ROS1 plays an important role in the molecular mechanisms associated with genes involved in defense pathways in response to abiotic stresses.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Respuesta al Choque por Frío/genética , Metilación de ADN/genética , Deshidratación/genética , Redes y Vías Metabólicas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de Plantas , Plantas Modificadas Genéticamente
18.
Mol Biol Rep ; 49(1): 303-312, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34743272

RESUMEN

BACKGROUND: As an alpine plant, Rhododendron chrysanthum (R. chrysanthum) has evolved cold resistance mechanisms and become a valuable plant resource with the responsive mechanism of cold stress. METHODS AND RESULTS: We adopt the phosphoproteomic and proteomic analysis combining with physiological measurement to illustrate the responsive mechanism of R. chrysanthum seedling under cold (4 °C) stress. After chilling for 12 h, 350 significantly changed proteins and 274 significantly changed phosphoproteins were detected. Clusters of Orthologous Groups (COG) analysis showed that significantly changed phosphoproteins and proteins indicated cold changed energy production and conversion and signal transduction. CONCLUSIONS: The results indicated photosynthesis was inhibited under cold stress, but cold induced calcium-mediated signaling, reactive oxygen species (ROS) homeostasis and other transcription regulation factors could protect plants from the destruction caused by cold stress. These data provide the insight to the cold stress response and defense mechanisms of R. chrysanthum leaves at the phosphoproteome level.


Asunto(s)
Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteómica/métodos , Rhododendron/crecimiento & desarrollo , Señalización del Calcio , Respuesta al Choque por Frío , Regulación de la Expresión Génica , Modelos Moleculares , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Rhododendron/metabolismo
19.
Funct Plant Biol ; 48(11): 1175-1185, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34600596

RESUMEN

Excessive UVB reaching the earth is a cause for concern. To decipher the mechanism concerning UVB resistance of plants, we studied the effects of UVB radiation on photosynthesis and metabolic profiling of Rhododendron chrysanthum Pall. by applying 2.3Wm-2 of UVB radiation for 2days. Results showed that maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of PSII (φPSII) decreased by 7.95% and 8.36%, respectively, following UVB exposure. Twenty five known metabolites were identified as most important by two different methods, including univariate and multivariate statistical analyses. Treatment of R. chrysanthum with UVB increased the abundance of flavonoids, organic acids, and amino acids by 62%, 22%, and 5%, respectively. UVB irradiation also induced about 1.18-fold increase in 11 top-ranked metabolites identified: five organic acids (d-2,3-dihydroxypropanoic acid, maleic acid, glyceric acid, fumaric acid and suberic acid), four amino acids (l-norleucine, 3-oxoalanine, l-serine and glycine), and two fatty acids (pelargonic acid and myristoleic acid). In addition, UVB irradiation increased the intermediate products of arginine biosynthesis and the TCA cycle. Taken together, the accumulation of flavonoids, organic acids, amino acids and fatty acids, accompanied by enhancement of TCA cycle and arginine biosynthesis, may protect R. chrysanthum plants against UVB deleterious effects.


Asunto(s)
Rhododendron , Flavonoides , Fotosíntesis , Hojas de la Planta , Rayos Ultravioleta
20.
Virology ; 546: 133-140, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452413

RESUMEN

Auxin has profound effects on plant growth and development. In addition to participating in plant growth and development, the auxin signaling pathway is involved in plant defense against pathogens. In this study, we investigated the molecular mechanism by which helper-component protease (HCPro) encoded by the Tobacco vein banding mosaic virus (TVBMV) activates auxin biosynthesis genes (YUCs) and interferes with the auxin signaling pathway. Our results demonstrated that the viral suppressor HCPro decreased the DNA methylation of dispersed repeats (DRs) within the promoters of YUC1, YUC5 and YUC10 and transcriptional activated these YUC genes targeted by RNA-directed DNA methylation (RdDM), leading to an increase in auxin accumulation in plants. Furthermore, we found that the induction of these YUCs by HCPro was attenuated in ros1 mutant plants, suggesting that HCPro-mediated transcriptional activation of the genes was partly dependent on ROS1-mediated DNA demethylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Sistema Enzimático del Citocromo P-450/genética , Ácidos Indolacéticos/metabolismo , Oxigenasas/genética , Enfermedades de las Plantas/virología , Potyvirus/enzimología , Arabidopsis/genética , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Oxigenasas/metabolismo , Enfermedades de las Plantas/genética , Potyvirus/genética , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA