Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 897-908, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884224

RESUMEN

Understanding water absorption mechanisms of sand-fixing plants is important for the rational establishment of plant community structures, thereby providing a scientific basis for desertification control and the efficient utilization of water resources in sandy areas. Based on the hydrogen and oxygen isotopic compositions of precipi-tation, soil water, xylem water, and groundwater, coupled with soil water-heat dynamics, annual water consumption characteristics of vegetation, using the multi-source linear mixing model (IsoSource), we analyzed the differences in water sources between Salix psammophila and Artemisia ordosica, during winter and the growing season. We further examined the effects of groundwater depth (2 m and 10 m), soil freezing-thawing, and drought on their water utilization to elucidate water absorption mechanisms of those species. The results showed that: 1) During soil freezing-thawing period (January to March), S. psammophila mainly utilized soil water in 60-120 cm depths below the frozen layer (69.1%). In the green-up season (April and May), soil water from the 0-60 cm layers could satisfy the water demand of S. psammophila (30.9%-87.6%). During the dry period of the growing season (June), it predominantly utilized soil water at the depth of 120-160 cm (27.4%-40.8%). Over the rainy season (July and September), soil water in 0-60 cm depths provided 59.8%-67.9% of the total water required. A. ordosica, with shallow roots, could not utilize soil water after complete freezing of root zone but could overwinter by storing water in rhizomes during autumn. During the growing season, it primarily relied on 0-40 cm soil layer (23.4%-86.8%). During the dry period, it mainly utilized soil water from 40-80 cm and 80-160 cm soil layers, with utilization rates of 14.6%-74.4% and 21.8%-78.2%, respectively. 2) With decreasing groundwater depth, vegetation shifted its water absorption depth upward, with water source of S. psammophila transitioning from 120-160 cm to 60-160 cm layers, while A. ordosica shifted water absorption depth from 80-160 cm to 0-40 cm. S. psammophila's utilization of soil water is influenced by transpiration, adopting an "on-demand" approach to achieve a balance between water supply and energy conservation, whereas A. ordosica tends to utilize shallow soil water, exhibiting a higher depen-dence on water sources from a single soil layer.


Asunto(s)
Artemisia , Salix , Arena , Suelo , Agua , Agua/análisis , Agua/metabolismo , Artemisia/crecimiento & desarrollo , Artemisia/metabolismo , China , Suelo/química , Salix/crecimiento & desarrollo , Salix/metabolismo , Clima Desértico , Agua Subterránea/química , Agua Subterránea/análisis , Ecosistema
2.
J Am Chem Soc ; 146(21): 14889-14897, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747066

RESUMEN

Ni-rich cathodes are some of the most promising candidates for advanced lithium-ion batteries, but their available capacities have been stagnant due to the intrinsic Li+ storage sites. Extending the voltage window down can induce the phase transition from O3 to 1T of LiNiO2-derived cathodes to accommodate excess Li+ and dramatically increase the capacity. By setting the discharge cutoff voltage of LiNi0.6Co0.2Mn0.2O2 to 1.4 V, we can reach an extremely high capacity of 393 mAh g-1 and an energy density of 1070 Wh kg-1 here. However, the phase transition causes fast capacity decay and related structural evolution is rarely understood, hindering the utilization of this feature. We find that the overlithiated phase transition is self-limiting, which will transform into solid-solution reaction with cycling and make the cathode degradation slow down. This is attributed to the migration of abundant transition metal ions into lithium layers induced by the overlithiation, allowing the intercalation of overstoichiometric Li+ into the crystal without the O3 framework change. Based on this, the wide-potential cycling stability is further improved via a facile charge-discharge protocol. This work provides deep insight into the overstoichiometric Li+ storage behaviors in conventional layered cathodes and opens a new avenue toward high-energy batteries.

4.
Biochem Genet ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526708

RESUMEN

The study aims to explore the fluctuating expression of C/EBP Homologous Protein (CHOP) following rat carotid artery injury and its central role in vascular stenosis. Using in vivo rat carotid artery injury models and in vitro ischemia and hypoxia cell models employing human aortic endothelial cells (HAECs) and vascular smooth muscle cells (T/G HA-VSMCs), a comprehensive investigative framework was established. Histological analysis confirmed intimal hyperplasia in rat models. CHOP expression in vascular tissues was assessed using Western blot and immunohistochemical staining, and its presence in HAECs and T/G HA-VSMCs was determined through RT-PCR and Western blot. The study evaluated HAEC apoptosis, inflammatory cytokine secretion, cell proliferation, and T/G HA-VSMCs migration through Western blot, ELISA, CCK8, and Transwell migration assays. The rat carotid artery injury model revealed substantial fibrous plaque formation and vascular stenosis, resulting in an increased intimal area and plaque-to-lumen area ratio. Notably, CHOP is markedly elevated in vessels of the carotid artery injury model compared to normal vessels. Atorvastatin effectively mitigated vascular stenosis and suppresses CHOP protein expression. In HAECs, ischemia and hypoxia-induced CHOP upregulation, along with heightened TNFα, IL-6, caspase3, and caspase8 levels, while reducing cell proliferation. Atorvastatin demonstrated a dose-dependent suppression of CHOP expression in HAECs. Downregulation of CHOP or atorvastatin treatment led to reduced IL-6 and TNFα secretion, coupled with augmented cell proliferation. Similarly, ischemia and hypoxia conditions increased CHOP expression in T/G HA-VSMCs, which was concentration-dependently inhibited by atorvastatin. Furthermore, significantly increased MMP-9 and MMP-2 concentrations in the cell culture supernatant correlated with enhanced T/G HA-VSMCs migration. However, interventions targeting CHOP downregulation and atorvastatin usage curtailed MMP-9 and MMP-2 secretion and suppressed cell migration. In conclusion, CHOP plays a crucial role in endothelial injury, proliferation, and VSMCs migration during carotid artery injury, serving as a pivotal regulator in post-injury fibrous plaque formation and vascular remodeling. Statins emerge as protectors of endothelial cells, restraining VSMCs migration by modulating CHOP expression.

5.
PeerJ ; 11: e16540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111660

RESUMEN

Background: Little is known about the relationship between sleep quality and lung cancer incidence. Thus, this study was conducted to investigate the potential connection between sleep quality and lung cancer incidence. Methods: We performed and selected a nested case-control study that included 150 lung cancer cases and 150 matched controls based on the Lianyungang cohort. Univariate and multivariate logistic regression was utilized to investigate the connection between potential risk factors and lung cancer incidence risk. Results: In this study, the average age of participants was 66.5 ± 9.1 years, with 58.7% being male, and 52.7% reportedly experiencing sleep quality problems. The results of multivariate logistic regression showed that poor sleep quality was connected to an increased lung cancer incidence risk (P = 0.033, odds ratio = 1.83, 95% confidence interval = [1.05-3.19]) compared with those with good sleep quality. The stratified analyses showed a significantly positive connection between poor sleep quality (vs. good sleep quality) and cancer risk in smokers (vs. non-smoker, P for interaction = 0.085). The combined effect analysis indicated that smokers with poor sleep quality suffered from a 2.79-fold increase in cancer incidence rates when compared with non-smokers with good sleep quality. Conclusions: Poor sleep quality was positively connected to an increased lung cancer incidence risk. In addition, among those individuals with poor sleep quality, smoking increased the lung cancer incidence risk.


Asunto(s)
Neoplasias Pulmonares , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Neoplasias Pulmonares/epidemiología , Estudios de Casos y Controles , Calidad del Sueño , Factores de Riesgo , Fumar/efectos adversos
6.
Cell Death Dis ; 14(6): 380, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37369647

RESUMEN

Microglia were considered as immune cells in inflammation until their angiogenic role was widely understood. Although the pro-inflammatory role of microglia in retinal angiogenesis has been explored, little is known about its role in pro-angiogenesis and the microglia-endothelia interaction. Here, we report that galectin-3 (Gal3) released by activated microglia functions as a communicator between microglia and endothelia and competitively binds to Jag1, thus inhibiting the Notch signaling pathway and enhancing endothelial angiogenic metabolism to promote angiogenesis. These results suggest that Gal3 may be a novel and effective target in the treatment of retinal angiogenesis.


Asunto(s)
Microglía , Neovascularización Patológica , Galectina 3/genética , Galectina 3/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Neovascularización Patológica/metabolismo , Transducción de Señal
7.
Rejuvenation Res ; 26(2): 57-67, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36734410

RESUMEN

Ischemia stroke is thought to be one of the vascular risks associated with neurodegenerative diseases, such as Alzheimer's disease (AD). Hydroxysafflor yellow A (HSYA) has been reported to protect against stroke and AD, while the underlying mechanism remains unclear. In this study, SH-SY5Y cell model treated with oxygen-glucose deprivation/reperfusion (OGD/R) was used to explore the potential mechanism of HSYA. Results from cell counting kit-8 (CCK-8) showed that 10 µM HSYA restored the cell viability after OGD 2 hours/R 24 hours. HSYA reduced the levels of malondialdehyde and reactive oxygen species, while improved the levels of superoxide dismutase and glutathione peroxidase. Furthermore, apoptosis was inhibited, and the expression of brain-derived neurotrophic factor was improved after HSYA treatment. In addition, the expression levels of amyloid-ß peptides (Aß) and BACE1 were decreased by HSYA, as well as the expression levels of binding immunoglobulin heavy chain protein, PKR-like endoplasmic reticulum (ER) kinase pathway, and activating transcription factor 6 pathway, whereas the expression level of protein disulfide isomerase was increased. Based on these results, HSYA might reduce Aß toxicity after OGD/R by interfering with apoptosis, oxidation, and neurotrophic factors, as well as relieving ER stress.


Asunto(s)
Chalcona , Neuroblastoma , Fármacos Neuroprotectores , Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Secretasas de la Proteína Precursora del Amiloide/farmacología , Glucosa/metabolismo , Ácido Aspártico Endopeptidasas/farmacología , Quinonas/farmacología , Apoptosis , Chalcona/farmacología , Daño por Reperfusión/metabolismo , Reperfusión , Estrés del Retículo Endoplásmico
8.
Insect Sci ; 30(3): 803-815, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36317674

RESUMEN

Nano-delivery systems have been applied to deliver various synthetic/botanical pesticides to increase the efficiency of pesticide use and reduce the volumes of pesticides applied. Previous studies have supported the hypothesis that the nanocarriers can help expand the insecticidal target of pesticides to include non-target pests. However, the potential mechanism underlying this interesting phenomenon remains unclear. Herein, a widely applied star polycation (SPc) nanocarrier was synthesized to construct a thiamethoxam (TMX) nano-delivery system. The SPc-based delivery system could promote the translocation of exogenous substances across the membrane of Sf9 cells, increase the cytotoxicity of TMX against Sf9 cells by nearly 20%, and expand the insecticidal target of TMX to include Spodoptera frugiperda (the fall armyworm), with a 27.5% mortality increase at a concentration of 0.25 mg/mL. Moreover, the RNA-seq analysis demonstrated that the SPc could upregulate various transport-related genes, such as Rab, SORT1, CYTH, and PIKfyve, for the enhanced cellular uptake of TMX. Furthermore, enhanced cell death in larvae treated with the TMX-SPc complex was observed through changes in the expression levels of death-related genes, such as Casp7, BIRC5, MSK1, and PGAM5. The SPc-based nano-delivery system improved the cellular uptake of TMX and expanded its insecticidal target by adjusting the expression levels of death-related genes. The current study mainly identified the transport and cell death genes related to nanocarrier-based insecticidal target expansion, which is beneficial for understanding the bioactivity enhancement of the nano-delivery system.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Tiametoxam/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Spodoptera , Plaguicidas/metabolismo , Larva/metabolismo
9.
J Colloid Interface Sci ; 629(Pt B): 206-216, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152577

RESUMEN

Burns are usually difficult to treat because their susceptibe to bacterial infections. When burns is accompanied by hyperthermia, the heat accumulated on the skin will causes extensive tissue damage. Most dressings focus on the treatment process, while ignoring the first-aid treatment to remove hyperthermia. To make matters worse, when outdoors, it is hard to find clean water to wash and cool the burned area. A dressing which can simultaneously realize first-time cooling and repairing treatment of the burned area can shorten treatment time, and is especially beneficial for outdoor use. In this study, a handheld coaxial electrospinning device is developed for preparing platelet-rich plasma @Polycaprolactone-epsilon polylysine (PRP@PCL/ε-PL) core-shell nanofibers. The nanofibers can be synchronously transformed into ice fibers during the spinning process, and directly deposited on the skin. The whole process is convenient to use outdoor. Via dual cooling mechanisms, first aid can take away the excessive heat in the burn area by nanofibers. These core-shell nanofibers also show its excellent antimicrobial and tissue regeneration-promoting properties. Therefore, it achieves first-time cooling and repair treatment of the burned area at the same time. Moreover, due to direct in-situ deposition of this handheld coaxial electrospinning, better antimicrobial properties, and faster healing performance are achieved. By using this integrated strategy that combines cooling, antibacterial and healing promotion, the burn recovery time is shortened from 21 days to 14 days.


Asunto(s)
Antiinfecciosos , Quemaduras , Nanofibras , Humanos , Antibacterianos/farmacología , Poliésteres , Cicatrización de Heridas , Quemaduras/terapia
10.
Sci Rep ; 12(1): 21014, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470922

RESUMEN

Partial bile duct ligation (pBDL) is considered a well-tolerated cholestatic model. Magnetic resonance imaging (MRI) is one of the most widely used tools in noninvasive imaging. However, no systematic studies have reported the possible effects of repeated MRI assessments in the pBDL model. Sixty BALB/C mice were investigated. MRI images of each mouse were recorded once every 2 weeks for 6 weeks after pBDL or sham surgery. The reproducibility of the pBDL model and the reliability of MRI were examined by behavioral, physiological, biochemical, and pathological parameters. The mice showed no alterations on behavioral and physiological tests (P > 0.05) at 2, 4, and 6 weeks after pBDL. Repeated general anesthesia did not result in any impairment after pBDL (P > 0.05). The behavioral and biochemical parameters were not affected by repeated MRIs or repeated contrast-enhanced MRIs (P > 0.05). Pathological staining showed the homogeneous formation of collagenous fiber in the pBDL mice and did not indicate any influence of repeated contrast-enhanced MRI on the number of inflammatory cells or fibrotic formation (P > 0.05). Thus, pBDL is a reproducible model with many advantages for animal welfare and scientific research. Additionally, MRI, as a safe tool for longitudinal evaluation and is well tolerated in mice with cholestasis.


Asunto(s)
Conductos Biliares , Colestasis , Ratones , Animales , Reproducibilidad de los Resultados , Ratones Endogámicos BALB C , Conductos Biliares/diagnóstico por imagen , Conductos Biliares/cirugía , Conductos Biliares/patología , Colestasis/diagnóstico por imagen , Colestasis/patología , Ligadura/métodos , Imagen por Resonancia Magnética , Modelos Animales de Enfermedad , Hígado/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA