Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Research (Wash D C) ; 7: 0359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694199

RESUMEN

Porous substrates act as open "interfacial reactors" during the synthesis of polyamide composite membranes via interfacial polymerization. However, achieving a thin and dense polyamide nanofilm with high permeance and selectivity is challenging when using a conventional substrate with uniform wettability. To overcome this limitation, we propose the use of Janus porous substrates as confined interfacial reactors to decouple the local monomer concentration from the total monomer amount during interfacial polymerization. By manipulating the location of the hydrophilic/hydrophobic interface in a Janus porous substrate, we can precisely control the monomer solution confined within the hydrophilic layer without compromising its concentration. The hydrophilic surface ensures the uniform distribution of monomers, preventing the formation of defects. By employing Janus substrates fabricated through single-sided deposition of polydopamine/polyethyleneimine, we significantly reduce the thickness of the polyamide nanofilms from 88.4 to 3.8 nm by decreasing the thickness of the hydrophilic layer. This reduction leads to a remarkable enhancement in water permeance from 7.2 to 52.0 l/m2·h·bar while still maintaining ~96% Na2SO4 rejection. The overall performance of this membrane surpasses that of most reported membranes, including state-of-the-art commercial products. The presented strategy is both simple and effective, bringing ultrapermeable polyamide nanofilms one step closer to practical separation applications.

2.
Nat Commun ; 15(1): 2282, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480727

RESUMEN

Fine design of surface charge properties of polyamide membranes is crucial for selective ionic and molecular sieving. Traditional membranes face limitations due to their inherent negative charge and limited charge modification range. Herein, we report a facile ionic liquid-decoupled bulk/interfacial diffusion strategy to elaborate the double charge flips of polyamide membranes, enabling on-demand transformation from inherently negative to highly positive and near-neutral charges. The key to these flips lies in the meticulous utilization of ionic liquid that decouples intertwined bulk/interfacial diffusion, enhancing interfacial while inhibiting bulk diffusion. These charge-tunable polyamide membranes can be customized for impressive separation performance, for example, profound Cl-/SO42- selectivity above 470 in sulfate recovery, ultrahigh Li+/Mg2+ selectivity up to 68 in lithium extraction, and effective divalent ion removal in pharmaceutical purification, surpassing many reported polyamide nanofiltration membranes. This advancement adds a new dimension to in the design of advanced polymer membranes via interfacial polymerization.

3.
Nat Commun ; 15(1): 1539, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378907

RESUMEN

It is particularly essential to analyze the complex crosslinked networks within polyamide membranes and their correlation with separation efficiency for the insightful tailoring of desalination membranes. However, using the degree of network crosslinking as a descriptor yields abnormal analytical outcomes and limited correlation with desalination performance due to imperfections in segmentation and calculation methods. Herein, we introduce a more rational parameter, denoted as harmonic amide bond density (HABD), to unravel the relationship between the crosslinked networks of polyamide membranes and their desalination performance. HABD quantifies the number of distinct amide bonds per unit mass of polyamide, based on a comprehensive segmentation of polyamide structure and consistent computational protocols derived from X-ray photoelectron spectroscopy data. Compared to its counterpart, HABD overcomes the limitations and offers a more accurate depiction of the crosslinked networks. Empirical data validate that HABD exhibits the expected correlation with the salt rejection and water permeance of reverse osmosis and nanofiltration polyamide membranes. Notably, HABD is applicable for analyzing complex crosslinked polyamide networks formed by highly functional monomers. By offering a powerful toolbox for systematic analysis of crosslinked polyamide networks, HABD facilitates the development of permselective membranes with enhanced performance in desalination applications.

4.
ACS Nano ; 18(3): 2434-2445, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206056

RESUMEN

Extracting lithium from seawater has emerged as a disruptive platform to resolve the issue of an ever-growing lithium shortage. However, achieving highly efficient and durable lithium extraction from seawater in an energy-efficient manner is challenging, as imposed by the low concentration of lithium ions (Li+) and high concentration of interfering ions in seawater. Here, we report a facile and universal strategy to develop photothermal "ion pumps" (PIPs) that allow achieving energy-efficient, augmented, and durable lithium extraction from seawater under sunlight. The key design of PIPs lies in the function fusion and spatial configuration manipulation of a hydrophilic Li+-trapping nanofibrous core and a hydrophobic photothermal shell for governing gravity-driven water flow and solar-driven water evaporation. Such a synergetic effect allows PIPs to achieve spontaneous, continuous, and augmented Li+ replenishment-diffusion-enrichment, as well as circumvent the impact of concentration polarization and scaling of interfering ions. We demonstrate that our PIPs exhibit dramatic enhancement in Li+ trapping rate and outstanding Li+ separation factor yet have ultralow energy consumption. Moreover, our PIPs deliver ultrastable Li+ trapping performance without scaling even under high-concentration interfering ions for 140 h operation, as opposed to the significant decrease of nearly 55.6% in conventional photothermal configuration. The design concept and material toolkit developed in this work can also find applications in extracting high-value-added resources from seawater and beyond.

5.
Chem Commun (Camb) ; 59(89): 13258-13271, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37869905

RESUMEN

Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.

6.
Langmuir ; 38(45): 13793-13802, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327135

RESUMEN

Thin-film-composite (TFC) nanofiltration membranes have found wide uses in environment remediation and industrial separation. There is a growing trend to avoid the use of organic solvents and toxic chemicals during membrane fabrication. Therefore, the aqueous fabrication of TFC membranes receives considerable interest as a green and sustainable process. However, it remains challenging to construct a defect-free and ultrathin film in a homogeneous aqueous phase without the assistance of an interface. The contra-diffusion process provides a special "interface" to confine the film formation within a narrow space by regulating the competition between precursor diffusion and interfacial reactions. Herein, Fe3+/tannic acid (TA) TFC membranes were fabricated by a contra-diffusion process. The effects of fabrication parameters on the Fe3+/TA TFC membrane microstructure and performance were also investigated. The negatively charged membrane performs a competitive Na2SO4 rejection of 95.6% with a permeation flux of 44.3 L m-2 h-1 under 0.6 MPa as well as more than 99.5% rejection to several anionic dyes. The as-prepared membranes perform superior nanofiltration performance compared to other reported Fe3+/TA-based membranes, owing to the thin and defect-free selective layers by self-regulation. Moreover, the membranes exhibit stable rejection during a long-term nanofiltration test.

7.
Anal Bioanal Chem ; 414(17): 4977-4985, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35606451

RESUMEN

Phenotyping of bacteria with vibrational spectroscopy has caught much attention in bacteria-related research. It is known that many factors could affect this process. Among them, solution pH maintenance is crucial, yet its impact on the bacterial SERS spectra is surprisingly neglected. In this work, we focused on two situations related to pH maintenance: the effect of the same buffer on the SERS spectra of bacteria under different pH values, and the influence of different buffers on the SERS spectra of bacteria under the same pH value. Specifically, Britton-Robison (BR) buffer was used to evaluate the effect of pH value on bacteria SERS spectra thanks to its wide pH range. Four different buffers, namely BR buffer, acetate buffer, phosphate buffer, and carbonate buffer, were used to illustrate the impact of buffer types on SERS spectra of bacteria. The results showed that the intensity and number of characteristic peaks of the SERS spectra of Gram-negative (G -) bacteria changed more significantly than Gram-positive (G +) bacteria with the change of pH value. Furthermore, compared with phosphate buffer and carbonate buffer, BR buffer could bring more characteristic SERS bands with better reproducibility, but slightly inferior to acetate buffer. In conclusion, the influence of the pH and types of the buffer on the SERS spectra of bacteria are worthy of further discussion.


Asunto(s)
Bacterias , Espectrometría Raman , Bacterias/química , Concentración de Iones de Hidrógeno , Fosfatos , Reproducibilidad de los Resultados , Espectrometría Raman/métodos
8.
Luminescence ; 37(7): 1145-1151, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35481694

RESUMEN

Surface-enhanced Raman scattering (SERS) is a powerful tool for constructing biomolecular fingerprints, which play a vital role in differentiation of bacteria. Due to the rather subtle differences in the SERS spectra among different bacteria, artificial intelligence is usually adopted and enormous amounts of spectral data are required to improve the differentiation efficiency. However, in many cases, large volume data acquisition on bacteria is not only technical difficult but labour intensive. It is known that surface modification of SERS nanomaterials can bring additional dimensionality (difference) of the SERS fingerprints. Here in this work, we show that the concept could be used to improve the bacteria differentiation efficiency. Ag NPs were modified with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, and 1-dodecanethiol to provide additional dimensionality. The modified NPs then were mixed with cell lysate from different strains of Bacillus cereus (B. cereus). Even by applying a simple PCA process to the resulting SERS spectra data, all the three modified Ag NPs showed superior differentiation results compared with bare Ag NPs, which could only separate Staphylococcus aureus (S. aureus) and B. cereus. It is believed that the multidimensional SERS could find great potential in bacteria differentiation.


Asunto(s)
Nanopartículas del Metal , Espectrometría Raman , Inteligencia Artificial , Bacillus cereus , Plata , Espectrometría Raman/métodos , Staphylococcus aureus
9.
Anal Chem ; 94(18): 6791-6798, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35476403

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) stands out in the field of microbial analysis due to its rich molecular information, fast analysis speed, and high sensitivity. However, achieving strain-level differentiation is still challenging because numerous bacterial species inevitably have very similar SERS profiles. Here, a method inspired by the black-box theory was proposed to boost the spectral differences, where the undifferentiated bacteria was considered as a type of black-box, external environmental stress was used as the input, and the SERS spectra of bacteria exposed to the same stress was output. For proof of the concept, three types of environmental stress were explored, i.e., ethanol, ultraviolet light (UV), and ultrasound. Enterococcus faecalis (E. faecalis) and three types of Escherichia coli (E. coli) were all subjected to the stimuli (stress) before SERS measurement. Then the collected spectra were processed only by simple principal component analysis (PCA) to achieve differentiation. The results showed that appropriate stress was beneficial to increase the differences in bacterial SERS spectra. When sonication at 490 W for 60 s was used as the input, the optimal differentiation of bacteria at the species (E. faecalis and E. coli) and strain-level (three E. coli) can be achieved.


Asunto(s)
Infecciones por Escherichia coli , Espectrometría Raman , Bacterias/química , Escherichia coli , Humanos , Plata/química , Espectrometría Raman/métodos
10.
J Mater Chem B ; 10(14): 2719-2727, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35138320

RESUMEN

The tympanic membrane plays an important role in the human hearing system, which is easily perforated under unfavorable conditions, leading to loss of hearing and otitis media. Many autologous materials and artificial materials have been used to repair a perforated tympanic membrane, but these materials sometimes can cause severe hearing loss because of their adhesion to the ossicle during the healing process and the postoperative process. Herein, we report Janus membranes with asymmetric cellular adhesion behaviors for regenerating the eardrum. These Janus membranes are constructed by co-depositing a tannic acid (TA)/3-aminopropyltriethoxysilane (APTES) coating on one surface of the polypropylene microfiltration membrane. Cellular experiments indicate that the Janus membranes have good biocompatibility and asymmetric cellular adhesion properties. The repair of the tympanic membrane perforation experiment and laser Doppler vibrometer (LDV) measurements prove that the hydrophilic surface of Janus membranes repairs perforated eardrums, and meanwhile the hydrophobic surface can avoid adhering to the inner ear tissue for reducing hearing loss. The Janus membranes have good prospects in the treatment of tympanic membrane perforation.


Asunto(s)
Otitis Media , Perforación de la Membrana Timpánica , Humanos , Otitis Media/complicaciones , Otitis Media/cirugía , Membrana Timpánica/cirugía , Perforación de la Membrana Timpánica/etiología , Perforación de la Membrana Timpánica/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA