Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Neurosci ; 26(5): 810-819, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973512

RESUMEN

Cholinergic basal forebrain (CBF) signaling exhibits multiple timescales of activity with classic slow signals related to brain and behavioral states and fast, phasic signals reflecting behavioral events, including movement, reinforcement and sensory-evoked responses. However, it remains unknown whether sensory cholinergic signals target the sensory cortex and how they relate to local functional topography. Here we used simultaneous two-channel, two-photon imaging of CBF axons and auditory cortical neurons to reveal that CBF axons send a robust, nonhabituating and stimulus-specific sensory signal to the auditory cortex. Individual axon segments exhibited heterogeneous but stable tuning to auditory stimuli allowing stimulus identity to be decoded from population activity. However, CBF axons displayed no tonotopy and their frequency tuning was uncoupled from that of nearby cortical neurons. Chemogenetic suppression revealed the auditory thalamus as a major source of auditory information to the CBF. Finally, slow fluctuations in cholinergic activity modulated the fast, sensory-evoked signals in the same axons, suggesting that a multiplexed combination of fast and slow signals is projected from the CBF to the auditory cortex. Taken together, our work demonstrates a noncanonical function of the CBF as a parallel channel for state-dependent sensory signaling to the sensory cortex that provides repeated representations of a broad range of sound stimuli at all points on the tonotopic map.


Asunto(s)
Corteza Auditiva , Prosencéfalo Basal , Corteza Auditiva/fisiología , Prosencéfalo Basal/fisiología , Estimulación Acústica , Transducción de Señal , Colinérgicos/farmacología
2.
Elife ; 92020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32228858

RESUMEN

The brains of Alzheimer's disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-ß plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-ß plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer's disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-ß peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-ß oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-ß peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-ß oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-ß were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-ß oligomerization from Amyloid-ß expression alone. The physical damage caused by Amyloid-ß oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-ß oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


Alzheimer's disease is a progressive condition that damages the brain over time. The cause is not clear, but a toxic molecule called Amyloid-ß peptide seems to play a part. It builds up in the brains of people with Alzheimer's disease, forming hard clumps called plaques. Yet, though the plaques are a hallmark of the disease, experimental treatments designed to break them down do not seem to help. This raises the question ­ do Amyloid-ß plaques actually cause Alzheimer's disease? Answering this question is not easy. One way to study the effect of amyloid plaques is to inject clumps of Amyloid-ß peptides into model organisms. This triggers Alzheimer's-like brain damage, but it is not clear why. It remains difficult to tell the difference between the damage caused by the injected Amyloid-ß peptides and the damage caused by the solid plaques that they form. For this, researchers need a way to trigger plaque formation directly inside animal brains. This would make it possible to test the effects of plaque-targeting treatments, like the drug lithium. Optogenetics is a technique that uses light to control molecules in living animals. Hsien, Kaur et al. have now used this approach to trigger plaque formation by fusing light-sensitive proteins to Amyloid-ß peptides in worms, fruit flies and zebrafish. This meant that the peptides clumped together to form plaques whenever the animals were exposed to blue light. This revealed that, while both the Amyloid-ß peptides and the plaques caused damage, the plaques were much more toxic. They damaged cell metabolism and caused tissue loss that resembled late Alzheimer's disease in humans. To find out whether it was possible to test Alzheimer's treatments in these animals, Hsien, Kaur et al. treated them with the drug, lithium. This increased their lifespan, reversing some of the damage caused by the plaques. Alzheimer's disease affects more than 46.8 million people worldwide and is the sixth leading cause of death in the USA. But, despite over 50 years of research, there is no cure. This new plaque-formation technique allows researchers to study the effects of amyloid plaques in living animals, providing a new way to test Alzheimer's treatments. This could be of particular help in studies of experimental drugs that aim to reduce plaque formation.


Asunto(s)
Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/fisiopatología , Luz , Optogenética/métodos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/efectos de la radiación , Caenorhabditis elegans , Progresión de la Enfermedad , Drosophila , Femenino , Células HEK293 , Humanos , Litio/administración & dosificación , Masculino , Enfermedades Neurodegenerativas , Placa Amiloide , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA