Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Insect Mol Biol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801334

RESUMEN

Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, Bombyx mori RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. Escherichia coli expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with B. mori nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.

2.
Food Chem ; 452: 139561, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728897

RESUMEN

The utilization of essential oils as natural antioxidants and preservatives is limited by high volatility, poor water solubility, and long-term instability. To address this, a novel ultrasonic-assisted method was used to prepare and stabilize a nanoemulsion of turmeric essential oil-in-water, incorporating bioactive components extracted from Spirulina platensis. Ultrasonic treatment enhanced the extraction efficacy and nanoemulsion stability. Algal biomass subjected to ultrasonic treatment (30 min at 80% amplitude) yielded a dry extract of 73.66 ± 3.05%, with the highest protein, phenolic, phycocyanin, and allophycocyanin content, as well as maximum emulsifying activity. The resulting nanoemulsion (5% oil, 0.3% extract, 10 min ultrasonic treatment) showed reduced particle size (173.31 ± 2.24 nm), zeta potential (-36.33 ± 1.10 mV), low polydispersity index, and enhanced antioxidant and antibacterial properties. Rheology analysis indicated shear-thinning behavior, while microscopy and spectroscopy confirmed structural changes induced by ultrasonic treatment and extract concentration. This initiative developed a novel ultrasonic-assisted algal-based nanoemulsion with antioxidant and antibacterial properties.


Asunto(s)
Antibacterianos , Antioxidantes , Curcuma , Emulsiones , Aceites Volátiles , Spirulina , Spirulina/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Emulsiones/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Curcuma/química , Antibacterianos/farmacología , Antibacterianos/química , Tecnología Química Verde , Ultrasonido , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Agua/química
3.
Int J Biol Macromol ; 269(Pt 1): 132073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705328

RESUMEN

Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 µg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.


Asunto(s)
Movimiento Celular , Nanopartículas , Polisacáridos , Sargassum , Selenio , Sargassum/química , Humanos , Selenio/química , Movimiento Celular/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Células A549 , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Tamaño de la Partícula , Proliferación Celular/efectos de los fármacos , Algas Comestibles
4.
Sci Total Environ ; 929: 172472, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642760

RESUMEN

High reactive nitrogen (N) emissions due to anthropogenic activities in China have led to an increase in N deposition and ecosystem degradation. The Chinese government has strictly regulated reactive N emissions since 2010, however, determining whether N deposition has reduced requires long-term monitoring. Here, we report the patterns of N deposition at a rural forest site (Qingyuan) in northeastern China over the last decade. We collected 456 daily precipitation samples from 2014 to 2022 and analysed the temporal dynamics of N deposition. NH4+-N, NO3--N, and total inorganic N (TIN) deposition ranged from 10.5 ± 3.5 (mean ± SD), 6.1 ± 1.6, and 16.6 ± 4.7 kg N ha-1 year-1, respectively. Over the measurement period, TIN deposition at Qingyuan decreased by 55 %, whereas that in comparable sites in East Asia declined by 14-34 %. We used a random forest model to determine factors influencing the deposition of NH4+-N, NO3--N, and TIN during the study period. NH4+-N deposition decreased by 60 % because of decreased agricultural NH3 emissions. Furthermore, NO3--N deposition decreased by 42 %, due to reduced NOx emissions from agricultural soil and fossil fuel combustion. The steep decline in N deposition in northeastern China was attributed to reduced coal consumption, improved emission controls on automobiles, and shifts in agricultural practices. Long-term monitoring is needed to assess regional air quality and the impact of N emission control regulations.

5.
Front Biosci (Landmark Ed) ; 29(3): 93, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38538280

RESUMEN

BACKGROUND: Polygonum hydropiper L (PH) was widely used to treat dysentery, gastroenteritis, diarrhea and other diseases. Coptis chinensis (CC) had the effects of clearing dampness-heat, purging fire, and detoxifying. Study confirmed that flavonoids in PH and alkaloids in CC alleviated inflammation to inhibit the development of intestinal inflammation. However, how PH-CC affects UC was unclear. Therefore, the aim of this study is to analyze the mechanism of PH-CC on ulcerative colitis (UC) through network pharmacology and in vivo experiments. METHODS: The active ingredients and targets of PH-CC and targets of UC were screened based on related databases. The core targets of PH-CC on UC was predicted by protein-protein interaction network (PPI), and then the Gene Ontology-biological processes (GO-BP) function enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The binding activity between pyroptosis proteins, core targets and effective ingredients were verified based on molecular docking technology. Finally, combined with the results of network pharmacology and literature research, the mechanism of PH-CC against UC was verified by in vivo experiments. RESULTS: There were 23 active components and 191 potential targets in PH-CC, 5275 targets in UC, and 141 co-targets. GO-BP functional analysis of 141 co-targets showed that the first 20 biological processes were closely related to inflammation and lipopolysaccharide (LPS) stimulation. Furthermore, core targets had good binding activity with the corresponding compounds. Animal experiment indicated that PH-CC effectively prevented weight loss in UC mice, reduced the disease activity index (DAI) score, maintained colon length, suppressed myeloperoxidase (MPO) activity, inhibited pyroptosis protein expression, and downregulated the levels of IL-18 and IL-1ß to alleviate intestinal inflammation. CONCLUSIONS: The results of network pharmacology and animal experiments showed that PH-CC suppressed the inflammatory response, restored colon morphology, and inhibited pyroptosis in UC mice. Thus, PH-CC may improve UC by regulating the NOD-like receptor protein domain 3 (NLRP3)/Caspase-1 signaling pathway.


Asunto(s)
Colitis Ulcerosa , Polygonum , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Farmacología en Red , Coptis chinensis , Simulación del Acoplamiento Molecular , Inflamación
6.
BMJ Open ; 14(2): e079372, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38309762

RESUMEN

INTRODUCTION: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that modulates brain states by applying a weak electrical current to the brain cortex. Several studies have shown that anodal stimulation of the ipsilesional primary motor cortex (M1) may promote motor recovery of the affected upper limb in patients with stroke; however, a high-level clinical recommendation cannot be drawn in view of inconsistent findings. A priming brain stimulation protocol has been proposed to induce stable modulatory effects, in which an inhibitory stimulation is applied prior to excitatory stimulation to a brain area. Our recent work showed that priming theta burst magnetic stimulation demonstrated superior effects in improving upper limb motor function and neurophysiological outcomes. However, it remains unknown whether pairing a session of cathodal tDCS with a session of anodal tDCS will also capitalise on its therapeutic effects. METHODS AND ANALYSIS: This will be a two-arm double-blind randomised controlled trial involving 134 patients 1-6 months after stroke onset. Eligible participants will be randomly allocated to receive 10 sessions of priming tDCS+robotic training, or 10 sessions of non-priming tDCS+robotic training for 2 weeks. The primary outcome is the Fugl-Meyer Assessment-upper extremity, and the secondary outcomes are the Wolf Motor Function Test and Modified Barthel Index. The motor-evoked potentials, regional oxyhaemoglobin level and resting-state functional connectivity between the bilateral M1 will be acquired and analysed to investigate the effects of priming tDCS on neuroplasticity. ETHICS AND DISSEMINATION: The study has been approved by the Research Ethics Committee of the Shanghai Yangzhi Rehabilitation Center (reference number: Yangzhi2023-022) and will be conducted in accordance with the Declaration of Helsinki of 1964, as revised in 2013. TRIAL REGISTRATION NUMBER: ChiCTR2300074681.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Recuperación de la Función , China , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Extremidad Superior , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Bioresour Technol ; 394: 130282, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163488

RESUMEN

The design of novel electrode deflector structures (EDSs) introduced a promising strategy for enhancing raceway ponds performance, increasing carbon fixation, and improving microalgal biomass accumulation. The computational fluid dynamics, based flow field principles, proved that the potency of arc-shaped electrode deflector structures (A-EDS) and spiral electrode deflector structures (S-EDS) were optimal. These configurations yielded superior culture effects, notably reducing dead zones by 9.1% and 11.7%, while elevating biomass increments of 14.7% and 11.5% compared to the control, respectively. In comparison to scenarios without electrostatic field application, the A-EDS group demonstrated pronounced post-stimulation growth, exhibiting an additional biomass increase of 11.2%, coupled with a remarkable 23.6% surge in CO2 fixation rate and mixing time reduction by 14.7%. A-EDS and S-EDS, combined with strategic electric field integration, provided a theoretical basis for promoting microalgal biomass production and enhancing carbon fixation in a raceway pond environment to similar production practices.


Asunto(s)
Microalgas , Estanques , Biomasa , Hidrodinámica
8.
Bioresour Technol ; 394: 130209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135224

RESUMEN

Urban areas remarkably affect global public health due to their emissions of greenhouse gases and poor air quality. Although urban areas only cover 2% of the Earth's surface, they are responsible for 80% of greenhouse gas emissions. Dense buildings limit vegetation, leading to increased air pollution and disruption of the local and regional carbon cycle. The substitution of urban gray roofs with microalgal green roofs has the potential to improve the carbon cycle by sequestering CO2 from the atmosphere. Microalgae can fix 15-50 times more CO2 than other types of vegetation. Advanced microalgal-based green roof technology may significantly accelerate the reduction of atmospheric CO2 in a more effective way. Microalgal green roofs also enhance air quality, oxygen production, acoustic isolation, sunlight absorption, and biomass production. This endeavor yields the advantage of simultaneously generating protein, lipids, vitamins, and a spectrum of valuable bioactive compounds, including astaxanthin, carotenoids, polysaccharides, and phycocyanin, thus contributing to a green economy. The primary focus of the current work is on analyzing the ecological advantages and CO2 bio-fixation efficiency attained through microalgal cultivation on urban rooftops. This study also briefly examines the idea of green roofs, clarifies the ecological benefits associated with them, discusses the practice of growing microalgae on rooftops, identifies the difficulties involved, and the positive aspects of this novel strategy.


Asunto(s)
Gases de Efecto Invernadero , Microalgas , Fotobiorreactores , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Microclima , Biomasa
9.
Bioresour Technol ; 394: 130241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142911

RESUMEN

Rotifer reproduction control in open microalgae cultivation systems poses a significant challenge for large-scale industries. Conventional methods, such as electric, meshing, and chemical techniques, are often expensive, ineffective, and may have adverse environmental-health impacts. This study investigated a promising control technique through light-induced phototaxis to concentrate rotifers in a specific spot, where they were electroshocked by local-limited exposure dose. The results showed that the rotifers had the most pronounced positive and negative phototropism with phototaxis rates of 66.7 % and -78.8 %, respectively, at blue-light irradiation of 30 µmol∙m-2∙s-1 and red-light irradiation of 22.5 µmol∙m-2∙s-1 for 20 min. The most effective electroshock configuration employed 1200 V/cm for 15 min with a 1-second cycle time and a 10 % duty cycle, resulting in a 75.0 % rotifer removal rate without impacting microalgae growth. The combination of the two light beams could effectively lead rotifers to designated areas where they were electrocuted successfully.


Asunto(s)
Microalgas , Estanques , Fototaxis , Electrochoque , Luz Azul , Biomasa
10.
Front Microbiol ; 14: 1257164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928668

RESUMEN

Coffee is an important cash crop worldwide, but it has been plagued by serious continuous planting obstacles. Intercropping with Areca catechu could alleviate the continuous planting obstacle of coffee due to the diverse root secretions of Areca catechu. However, the mechanism of Areca catechu root secretion in alleviating coffee continuous planting obstacle is still unclear. The changes of coffee rhizosphere soil microbial compositions and functions were explored by adding simulated root secretions of Areca catechu, the primary intercropping plant species (i.e., amino acids, plant hormone, organic acids, phenolic acids, flavonoids and sugars) in current study. The results showed that the addition of coffee root exudates altered soil physicochemical properties, with significantly increasing the availability of potassium and organic matter contents as well as promoting soil enzyme activity. However, the addition of plant hormone, organic acids, or phenolic acids led to a decrease in the Shannon index of bacterial communities in continuously planted coffee rhizosphere soil (RS-CP). The inclusion of phenolic acids specifically caused the decrease of fungal Shannon index. Plant hormone, flavonoids, phenolic acids, and sugars increased the relative abundance of beneficial bacteria with reduced bacterial pathogens. Flavonoids and organic acids increased the relative abundance of potential fungal pathogen Fusarium. The polyphenol oxidase, dehydrogenase, urease, catalase, and pH were highly linked with bacterial community structure. Moreover, catalase, pH, and soil-available potassium were the main determinants of fungal communities. In conclusion, this study highlight that the addition of plant hormone, phenolic acids, and sugars could enhance enzyme activity, and promote synergistic interactions among microorganisms by enhancing the physicochemical properties of RS-CP, maintaining the soil functions in coffee continuous planting soil, which contribute to alleviate the obstacles associated with continuous coffee cultivation.

11.
Front Neurosci ; 17: 1269474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033537

RESUMEN

Introduction: Findings based on the use of transcranial magnetic stimulation and electromyography (TMS-EMG) to determine the effects of motor lateralization and aging on intracortical excitation and inhibition in the primary motor cortex (M1) are inconsistent in the literature. TMS and electroencephalography (TMS-EEG) measures the excitability of excitatory and inhibitory circuits in the brain cortex without contamination from the spine and muscles. This study aimed to investigate the effects of motor lateralization (dominant and non-dominant hemispheres) and aging (young and older) and their interaction effects on intracortical excitation and inhibition within the M1 in healthy adults, measured using TMS-EMG and TMS-EEG. Methods: This study included 21 young (mean age = 28.1 ± 3.2 years) and 21 older healthy adults (mean age = 62.8 ± 4.2 years). A battery of TMS-EMG measurements and single-pulse TMS-EEG were recorded for the bilateral M1. Results: Two-way repeated-measures analysis of variance was used to investigate lateralization and aging and the lateralization-by-aging interaction effect on neurophysiological outcomes. The non-dominant M1 presented a longer cortical silent period and larger amplitudes of P60, N100, and P180. Corticospinal excitability in older participants was significantly reduced, as supported by a larger resting motor threshold and lower motor-evoked potential amplitudes. N100 amplitudes were significantly reduced in older participants, and the N100 and P180 latencies were significantly later than those in young participants. There was no significant lateralization-by-aging interaction effect in any outcome. Conclusion: Lateralization and aging have independent and significant effects on intracortical excitation and inhibition in healthy adults. The functional decline of excitatory and inhibitory circuits in the M1 is associated with aging.

12.
Int J Biol Macromol ; 253(Pt 6): 127352, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838120

RESUMEN

Interacting with cell surface attachment factors or receptors is the first step for virus infection. Glycans cover a thick layer on eukaryotic cells and are potential targets of various viruses. Bombyx mori nuclear polyhedrosis viruses (BmNPV) is a baculovirus that causes huge economic loss to the sericulture industry but the mechanism of infection is unclear. Looking for potential host receptors for the virus is an important task. In this study, we investigated the role of glycosaminoglycan (GAG) modifications, including heparan sulfate (HS) and chondroitin sulfate (CS), during BmNPV infection. Enzymatic removal of cell surface HS and CS effectively inhibited BmNPV infection and replication. Exogenous HS and CS can directly bind to BmNPV virion in solution and act as neutralizers for viral infection. Furthermore, the expression of enzymes involved in GAG biosynthesis was upregulated in the BmNPV susceptible silkworm after virus administration, but down-regulated in the resistant strain after virus treatment, suggesting that BmNPV was able to utilize host cell machinery to promote the biosynthesis of GAGs. This study demonstrated HS and CS as important attachment factors that facilitate the viral entry process, and targeting HS and CS can be an effective means of inhibiting BmNPV infection.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Nucleopoliedrovirus/metabolismo , Bombyx/metabolismo , Glicosaminoglicanos/metabolismo , Células Eucariotas
13.
Bioresour Technol ; 386: 129501, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37468013

RESUMEN

In this research, the effects of filtered sunlight traveling through translucent-colored polyvinyl chloride (PVC) sheets on the photoconversion efficiency of Arthrospira platensis are investigated. Filtered sunlight improves the phycobilisome's capacity to completely absorb and transport it to intracellular photosystems. Findings indicated that filtered sunlight via orange-colored PVC sheet increased biomass dry weight by 21% (2.80 g/L), while under blue-colored PVC sheet decreased by 32% (1.49 g/L), when compared with translucent-colored (control) PVC sheet (2.19 g/L) after 120 h of culture. The meteorological conditions during the 1st week of cultivation reported higher light flux than the subsequent weeks. Furthermore, sunlight filtered through orange PVC sheet enhanced protein, allophycocyanin, phycocyanin, chlorophyll-a and carotenoids synthesis by 13%, 15%, 13%, 22%, and 27%, respectively. This practical and inexpensive solar radiation filtration system supports large-scale production of tailored bioactive compounds from microalgae with high growth rate.


Asunto(s)
Spirulina , Luz Solar , Cloruro de Polivinilo , Estanques , Spirulina/metabolismo , Biomasa
14.
Sci Total Environ ; 894: 165044, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37355125

RESUMEN

This study focuses on microbial protein (MP) as a promising food-feed alternative source that may contribute to overcoming the increased food challenge. It analyzes the traditional and advanced MP technologies, their progress, sustainability, and environmental limitations. Traditional MP technologies are reliable for global food-feed supply chains but face higher production costs and negative environmental impacts. Advanced MP systems utilize sustainable sources like food waste, but limited availability and characteristics necessitate pretreatments. Power-to-protein technology looks promising due to its ability to capture CO2 and avoiding external organic carbon addition, although more research is still needed. Cultivating indigenous microorganisms in agricultural wastewater, such as biofloc technology, offer potential for nutrient recovery and reduced environmental impacts. Microalgal biomass is sustainable but faces challenges of low palatability, productivity, and high costs, while ongoing studies try to solve these challenges. This review concludes that the advanced MP technologies are environmentally friendly and promising, while further studies are necessary to enhance performance and commercial implementation.


Asunto(s)
Microalgas , Eliminación de Residuos , Alimentos , Aguas Residuales , Ambiente , Biomasa , Tecnología , Microalgas/metabolismo
15.
Crit Rev Biotechnol ; : 1-16, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380353

RESUMEN

Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.

16.
Bioorg Med Chem ; 83: 117240, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36963270

RESUMEN

Protein tyrosine phosphatase (PTP1B) antagonizes insulin signaling and acts as a potential therapeutic target for insulin resistance associated with obesity and type II diabetes. In this work, a series of isosteviol derivatives 1-28 was synthesized and the inhibitory activity on PTP1B was evaluated by double antibody sandwich ELISA (DAS-ELISA) in vitro. Most isosteviol derivatives showed moderate PTP1B inhibitory activities. Among them, derivatives 10, 13, 24, 27 showed remarkable bioactivities with IC50 values ranging from 0.24 to 0.40 µM. Particularly, derivative 24 exhibited the best inhibitory activity against PTP1B (IC50 = 0.24 µM) in vitro; moreover, it showed 7-fold selectivity to PTP1B over T-cell protein tyrosine phosphatase (TCPTP) and 14-fold selectivity to PTP1B over cell division cycle 25 homolog B (CDC25B). Molecular docking studies demonstrated the hydrogen bond interaction between 24 and LYS-116 residue in PTP1B might be essential for the inhibitory activity. The results suggested that derivative 24 has great potential to be employed as drug candidate for the treatment of obesity and type II diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Obesidad/tratamiento farmacológico
17.
Bioresour Technol ; 373: 128710, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36754237

RESUMEN

In this study, computational fluid dynamics were employed to examined clockwise and anticlockwise vortexes in the rising and down coming sections of novel nested-bottle photobioreactor. The radial velocity was increased by four times which significantly reduced dead zones compared to traditional PBR. The (NB-PBR) comprised of integrated bottles connected by curved tubes (d = 4 cm) that generated dominant vortices as the microalgae solution flows through each section (h = 10 cm). The (NB-PBR) was independent of the inner and outer sections which increased the mixing time and mass-transfer coefficient by 13.33 % and 42.9 %, respectively. Furthermore, the results indicated that the (NB-PBR) showed higher photosynthesis efficiency preventing self-shading and photo-inhibition, resulting in an increase in biomass yield and carbon dioxide fixation by 35 % and 35.9 %, respectively.


Asunto(s)
Microalgas , Spirulina , Fotobiorreactores , Fotosíntesis , Biomasa
18.
Annu Rev Entomol ; 68: 381-399, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36689303

RESUMEN

Silkworm (Bombyx mori) is not only an economic insect but also a model organism for life science research. Bombyx mori nucleopolyhedrovirus (BmNPV) disease is a major infectious disease in the world's sericulture industry. The cocoon loss caused by this disease accounts for more than 60% of the total loss caused by all silkworm diseases. To date, there has been no effective solution for preventing and treating this disease. The most effective measure is to breed disease-resistant varieties. The quickest way to breed disease-resistant varieties is to apply genetic modification. However, this requires that we obtain disease resistance genes and know the mechanism of disease resistance. Since the discovery of disease-resistant resources in 1989, scholars in the sericulture industry around the world have been inspired to search for resistance genes. In the past two decades, with the help of multi-omics technologies, screening of resistance genes, gene localization, protein modification, virus-host interactions, etc., researchers have found some candidate genes that have been proposed to function at the cellular or individual level. Several disease-resistant varieties have been obtained and used in production through hybrid breeding, RNA interference, and genetic modification. This article summarizes and reviews the discovery of and research advances related to silkworm resistance to BmNPV. It is anticipated that the review will inspire scientific researchers to continue searching for disease resistance genes, clarify the molecular mechanism of silkworm disease resistance, and promote disease-resistant silkworm breeding.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Baculoviridae , Bombyx/genética , Bombyx/metabolismo , Resistencia a la Enfermedad , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo
19.
Front Neurosci ; 16: 1014495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248661

RESUMEN

The study of the synchronous characteristics and functional connections between the functional cortex and muscles of hand-grasping movements is important in basic research, clinical disease diagnosis and rehabilitation evaluation. The electroencephalogram (EEG) and electromyographic signal (EMG) signals of 15 healthy participants were used to analyze the corticomuscular coupling under grasping movements by holding three different objects, namely, card, ball, and cup by using the time-frequency Granger causality method based on time-varying nonlinear autoregressive with exogenous input (TV-NARX) model and Coiflets wavelet packet transform. The results show that there is a bidirectional coupling between cortex and muscles under grasping movement, and it is mainly reflected in the beta and gamma frequency bands, in which there is a statistically significant difference (p < 0.05) among the different grasping actions during the movement execution period in the beta frequency band, and a statistically significant difference (p < 0.1) among the different grasping actions during the movement preparation period in the gamma frequency band. The results show that the proposed method can effectively characterize the EEG-EMG synchronization features and functional connections in different frequency bands during the movement preparation and execution phases in the time-frequency domain, and reveal the neural control mechanism of sensorimotor system to control the hand-grasping function achievement by regulating the intensity of neuronal synchronization oscillations.

20.
J Proteome Res ; 21(9): 2114-2123, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35959672

RESUMEN

Parkinson's disease (PD) is a chronic and progressive movement disorder that is characterized by the loss of dopaminergic neurons in the brain. Animal models of PD have become very popular in the past two decades to understand the etiology, pathology, and molecular and cellular pathways associated with PD. In this study, we report the first neurotoxin-induced silkworm model for PD by chronic feeding with 6-hydroxydopamine (6-OHDA) and explore the possible molecular mechanisms associated with PD using proteomic and targeted metabolomic approaches. Although silkworm is phylogenetically distant from humans and rats, 6-OHDA treatment produced similar PD phenotypes, including motor dysfunction, dopaminergic neuron degeneration, and decreased levels of dopamine. Major neurotransmitters in the silkworm head tissue were profiled, revealing key molecules implicating neurodegenerative disorder. Proteomics analysis revealed a major downregulation of nearly 50 structural proteins constituting cuticles and microfilaments, indicating mechanical damage in the silkworm tissues. The results suggest that 6-OHDA treatment could induce PD-like symptoms in silkworms and activate similar proteomic and metabolic pathways to those in rats or higher animals. This study demonstrates the feasibility and value of the silkworm-based PD model, which may provide important clues for understanding the molecular and cellular mechanisms underlying PD. The mass spectrometry raw files have been deposited to iProx via the project ID IPX0004206000.


Asunto(s)
Bombyx , Enfermedad de Parkinson , Animales , Bombyx/genética , Bombyx/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas , Humanos , Oxidopamina/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteómica , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA