Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
3.
Nat Commun ; 15(1): 8077, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277642

RESUMEN

Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinación , Semillas , Germinación/efectos de los fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Cristalografía por Rayos X , Sulfonamidas/farmacología , Sulfonamidas/química , Proteínas de Transporte de Membrana
4.
Nat Plants ; 10(9): 1317-1329, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39179701

RESUMEN

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is crucial for profiling histone modifications and transcription factor binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits and flowers is challenging due to their sturdy cell walls and complex constituents. Here we present advanced ChIP (aChIP), an optimized method that efficiently isolates chromatin from plant tissues while simultaneously removing cell walls and cellular constituents. aChIP precisely profiles histone modifications in all 14 tested EIPOs and identifies transcription factor and chromatin-modifying enzyme binding sites. In addition, aChIP enhances ChIP efficiency, revealing numerous novel modified sites compared with previous methods in vegetative tissues. aChIP reveals the histone modification landscape for rapeseed dry seeds, highlighting the intricate roles of chromatin dynamics during seed dormancy and germination. Altogether, aChIP is a powerful, efficient and sensitive approach for comprehensive chromatin profiling in virtually all plant tissues, especially in EIPOs.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Semillas/genética , Cromatina/metabolismo , Cromatina/genética , Frutas/genética , Inmunoprecipitación de Cromatina/métodos , Flores/genética , Código de Histonas
5.
Nat Commun ; 15(1): 6652, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103368

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD+ deficiency in qs-2 caused by mutation in NAD+ biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance. The elevated defense in qs-2 is resulted from activated jasmonate biosynthesis, critically hydroperoxidation of α-linolenic acid by the 13-lipoxygenase (namely LOX2), which is escalated via the burst of chloroplastic ROS-singlet oxygen (1O2). The NAD+ deficiency-mediated JA induction and defense priming sequence in plants is recapitulated upon insect infestation, suggesting such defense mechanism operates in plant stress response. Hence, NAD homeostasis is a pivotal metabolic checkpoint that may be manipulated to navigate plant growth and defense metabolism for stress acclimation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , NAD , Oxilipinas , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , NAD/metabolismo , NAD/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Animales , Mutación , Lipooxigenasa/metabolismo , Lipooxigenasa/genética , Glucosinolatos/metabolismo , Glucosinolatos/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
6.
Artículo en Inglés | MEDLINE | ID: mdl-39192154

RESUMEN

DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.

7.
J Integr Plant Biol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031490

RESUMEN

Generation of crops with low phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6)) is an important breeding direction, but such plants often display less desirable agronomic traits. In this study, through ethyl methanesulfonate-mediated mutagenesis, we found that inositol 1,3,4-trisphosphate 5/6-kinase 4 (ITPK4), which is essential for producing InsP6, is a critical regulator of salt tolerance in Arabidopsis. Loss of function of ITPK4 gene leads to reduced root elongation under salt stress, which is primarily because of decreased root meristem length and reduced meristematic cell number. The itpk4 mutation also results in increased root hair density and increased accumulation of reactive oxygen species during salt exposure. RNA sequencing assay reveals that several auxin-responsive genes are down-regulated in the itpk4-1 mutant compared to the wild-type. Consistently, the itpk4-1 mutant exhibits a reduced auxin level in the root tip and displays compromised gravity response, indicating that ITPK4 is involved in the regulation of the auxin signaling pathway. Through suppressor screening, it was found that mutation of Multidrug Resistance Protein 5 (MRP5)5 gene, which encodes an ATP-binding cassette (ABC) transporter required for transporting InsP6 from the cytoplasm into the vacuole, fully rescues the salt hypersensitivity of the itpk4-1 mutant, but in the itpk4-1 mrp5 double mutant, InsP6 remains at a very low level. These results imply that InsP6 homeostasis rather than its overall amount is beneficial for stress tolerance in plants. Collectively, this study uncovers a pair of gene mutations that confer low InsP6 content without impacting stress tolerance, which offers a new strategy for creating "low-phytate" crops.

8.
Plant Commun ; : 101040, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39001607

RESUMEN

Understanding the behavior of endogenous proteins is crucial for functional genomics, yet their dynamic characterization in plants presents substantial challenges. Whereas mammalian studies have leveraged in locus tagging with the luminescent HiBiT peptide and genome editing for rapid quantification of native proteins, this approach remains unexplored in plants. Here, we introduce the in locus HiBiT tagging of rice proteins and demonstrate its feasibility in plants. We found that although traditional HiBiT blotting works in rice, it failed to detect two of the three tagged proteins, a result attributable to low luminescence activity in plants. To overcome this limitation, we engaged in extensive optimization, culminating in a new luciferin substrate coupled with a refined reaction protocol that enhanced luminescence up to 6.9 fold. This innovation led to the development of TagBIT (tagging with HiBiT), a robust method for high-sensitivity protein characterization in plants. Our application of TagBIT to seven rice genes illustrates its versatility on endogenous proteins, enabling antibody-free protein blotting, real-time protein quantification via luminescence, in situ visualization using a cross-breeding strategy, and effective immunoprecipitation for analysis of protein interactions. The heritable nature of this system, confirmed across T1 to T3 generations, positions TagBIT as a powerful tool for protein study in plant biology.

9.
BMC Plant Biol ; 24(1): 665, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997669

RESUMEN

Gene targeting (GT) allows precise manipulation of genome sequences, such as knock-ins and sequence substitutions, but GT in seed plants remains a challenging task. Engineered sequence-specific nucleases (SSNs) are known to facilitate GT via homology-directed repair (HDR) in organisms. Here, we demonstrate that Cas12a and a temperature-tolerant Cas12a variant (ttCas12a) can efficiently establish precise and heritable GT at two loci in Arabidopsis thaliana (Arabidopsis) through a sequential transformation strategy. As a result, ttCas12a showed higher GT efficiency than unmodified Cas12a. In addition, the efficiency of transcriptional and translational enhancers for GT via sequential transformation strategy was also investigated. These enhancers and their combinations were expected to show an increase in GT efficiency in the sequential transformation strategy, similar to previous reports of all-in-one strategies, but only a maximum twofold increase was observed. These results indicate that the frequency of double strand breaks (DSBs) at the target site is one of the most important factors determining the efficiency of genetic GT in plants. On the other hand, a higher frequency of DSBs does not always lead to higher efficiency of GT, suggesting that some additional factors are required for GT via HDR. Therefore, the increase in DSB can no longer be expected to improve GT efficiency, and a new strategy needs to be established in the future. This research opens up a wide range of applications for precise and heritable GT technology in plants.


Asunto(s)
Arabidopsis , Marcación de Gen , Arabidopsis/genética , Marcación de Gen/métodos , Transformación Genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Plantas Modificadas Genéticamente/genética
10.
Mol Plant ; 17(9): 1472-1483, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39049493

RESUMEN

Gene upregulation through genome editing is important for plant research and breeding. Targeted insertion of short transcriptional enhancers (STEs) into gene promoters may offer a universal solution akin to transgene-mediated overexpression while avoiding the drawbacks associated with transgenesis. Here, we introduce an "in locus activation" technique in rice that leverages well-characterized STEs for refined, heritable, and multiplexed gene upregulation. To address the scarcity of potent enhancers, we developed a large-scale mining approach and discovered a suite of STEs that are capable of enhancing gene expression in rice protoplasts. The in locus integration of these STEs into eight rice genes resulted in substantial transcriptional upregulation in the edited plants, with up to 869.1-fold increases in their transcript levels. Employing a variety of STEs, we achieved delicate control of gene expression, enabling the fine-tuning of key phenotypic traits such as plant height. Our approach also enabled efficient multiplexed gene upregulation, with up to four genes activated simultaneously, significantly enhancing the nicotinamide mononucleotide metabolic pathway. Importantly, heritability studies from the T0 to T3 generations confirmed the stable and heritable nature of STE-driven gene activation. Collectively, our work demonstrates that coupled with STE mining, leveraging genome editing for in locus activation and gene upregulation holds great promise to be widely adopted in fundamental plant research and crop breeding.


Asunto(s)
Sistemas CRISPR-Cas , Elementos de Facilitación Genéticos , Edición Génica , Oryza , Regulación hacia Arriba , Oryza/genética , Regulación hacia Arriba/genética , Elementos de Facilitación Genéticos/genética , Edición Génica/métodos , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
11.
Mol Cell Proteomics ; 23(8): 100804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901673

RESUMEN

Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Egtácico , Manitol , Presión Osmótica , Proteómica , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Fosforilación , Proteínas de Arabidopsis/metabolismo , Proteómica/métodos , Ácido Egtácico/farmacología , Ácido Egtácico/análogos & derivados , Manitol/farmacología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas raf/metabolismo
12.
Plant Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888999

RESUMEN

Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3 and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinate different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear. Here, in addition to modulating histone deacetylation, we found that SANT1/2/3/4 proteins acted like HDA6 or HDA9 in regulating the removal of histone Khib in Arabidopsis (Arabidopsis thaliana). Histone H3 lysine acetylation (H3KAc) and histone Khib were coordinated by SANT1/2/3/4 to regulate gene expression, with H3KAc playing a predominant role and Khib acting complementarily to H3KAc. SANT1/2/3/4 mutation significantly increased the expression of heat-inducible genes with concurrent change of H3KAc levels under normal and heat stress conditions, resulting in enhanced thermotolerance. This study revealed the critical roles of Harbinger transposon-derived SANT domain-containing proteins in transcriptional regulation by coordinating different types of histone PTMs and in the regulation of plant thermotolerance by mediating histone acetylation modification.

13.
Proc Natl Acad Sci U S A ; 121(22): e2320468121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768356

RESUMEN

Spontaneous gain or loss of DNA methylation occurs in plant and animal genomes, and DNA methylation changes can lead to meiotically stable epialleles that generate heritable phenotypic diversity. However, it is unclear whether transgenerational epigenetic stability may be regulated by any cellular factors. Here, we examined spontaneously occurring variations in DNA methylation in wild-type and ros1 mutant Arabidopsis plants that were propagated for ten generations from single-seed descent. We found that the ros1 mutant, which is defective in active DNA demethylation, showed an increased transgenerational epimutation rate. The ros1 mutation led to more spontaneously gained methylation than lost methylation at individual cytosines, compared to the wild type which had similar numbers of spontaneously gained and lost methylation cytosines. Consistently, transgenerational differentially methylated regions were also biased toward hypermethylation in the ros1 mutant. Our results reveal a genetic contribution of the ROS1 DNA demethylase to transgenerational epigenetic stability and suggest that ROS1 may have an unexpected surveillance function in preventing transgenerational DNA methylation increases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Desmetilación del ADN , Metilación de ADN , Epigénesis Genética , Mutación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , ADN de Plantas/genética , ADN de Plantas/metabolismo , Proteínas Nucleares
14.
Immun Ageing ; 21(1): 29, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730291

RESUMEN

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

15.
New Phytol ; 243(6): 2501-2511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38798233

RESUMEN

Gene silencing is crucial in crop breeding for desired trait development. RNA interference (RNAi) has been used widely but is limited by ectopic expression of transgenes and genetic instability. Introducing an upstream start codon (uATG) into the 5'untranslated region (5'UTR) of a target gene may 'silence' the target gene by inhibiting protein translation from the primary start codon (pATG). Here, we report an efficient gene silencing method by introducing a tailor-designed uATG-containing element (ATGE) into the 5'UTR of genes in plants, occupying the original start site to act as a new pATG. Using base editing to introduce new uATGs failed to silence two of the tested three rice genes, indicating complex regulatory mechanisms. Precisely inserting an ATGE adjacent to pATG achieved significant target protein downregulation. Through extensive optimization, we demonstrated this strategy substantially and consistently downregulated target protein expression. By designing a bidirectional multifunctional ATGE4, we enabled tunable knockdown from 19% to 89% and observed expected phenotypes. Introducing ATGE into Waxy, which regulates starch synthesis, generated grains with lower amylose, revealing the value for crop breeding. Together, we have developed a programmable and robust method to knock down gene expression in plants, with potential for biological mechanism exploration and crop enhancement.


Asunto(s)
Edición Génica , Silenciador del Gen , Oryza , Edición Génica/métodos , Oryza/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Sitios Genéticos , Genoma de Planta , Regiones no Traducidas 5'/genética , Genes de Plantas , Secuencia de Bases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenotipo
16.
J Integr Plant Biol ; 66(6): 1048-1051, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578176

RESUMEN

A newly developed rice guanine base editor (OsGTBE) achieves targeted and efficient G-to-T editing (C-to-A in the opposite strand) in rice. Using OsGTBE to edit endogenous herbicide-resistant loci generated several novel alleles conferring herbicide resistance, highlighting its utility in creating valuable germplasm and enhancing genetic diversity..


Asunto(s)
Alelos , Edición Génica , Resistencia a los Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , Edición Génica/métodos , Genes de Plantas , Herbicidas/farmacología , Secuencia de Bases
17.
J Integr Plant Biol ; 66(6): 1148-1157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597776

RESUMEN

Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.


Asunto(s)
Glycine max , MicroARNs , Semillas , Glycine max/genética , Glycine max/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Semillas/genética , Mutación/genética , Genes de Plantas , Edición Génica , Técnicas de Inactivación de Genes
18.
Plant Physiol ; 195(3): 2094-2110, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588029

RESUMEN

Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.


Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Plumbaginaceae , Citocininas/metabolismo , Citocininas/farmacología , Plumbaginaceae/genética , Plumbaginaceae/crecimiento & desarrollo , Plumbaginaceae/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
20.
Front Plant Sci ; 15: 1360925, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545386

RESUMEN

Gene targeting (GT) is a promising tool for precise manipulation of genome sequences, however, GT in seed plants remains a challenging task. The simple and direct way to improve the efficiency of GT via homology-directed repair (HDR) is to increase the frequency of double-strand breaks (DSBs) at target sites in plants. Here we report an all-in-one approach of GT in Arabidopsis by combining a transcriptional and a translational enhancer for the Cas expression. We find that facilitating the expression of Cas9 and Cas12a variant by using enhancers can improve DSB and subsequent knock-in efficiency in the Arabidopsis genome. These results indicate that simply increasing Cas protein expression at specific timings - egg cells and early embryos - can improve the establishment of heritable GTs. This simple approach allows for routine genome engineering in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA