RESUMEN
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.
RESUMEN
Arthrobotrys oligospora is a typical nematode-trapping (NT) fungus, which can secrete food cues to lure, capture, and digest nematodes by triggering the production of adhesive networks (traps). Based on genomic and proteomic analyses, multiple pathogenic genes and proteins involved in trap formation have been characterized; however, there are numerous uncharacterized genes that play important roles in trap formation. The functional studies of these unknown genes are helpful in systematically elucidating the complex interactions between A. oligospora and nematode hosts. In this study, we screened the gene AOL_s00004g24 (Ao4g24). This gene is similar to the SWI/SNF chromatin remodeling complex, which was found to play a potential role in trap formation in our previous transcriptome analysis. Here, we characterized the function of Ao4g24 by gene disruption, phenotypic analysis, and metabolomics. The deletion of Ao4g24 led to a remarkable decrease in conidia yield, trap formation, and secondary metabolites. Meanwhile, the absence of Ao4g24 influenced the mitochondrial membrane potential, ATP content, autophagy, ROS level, and stress response. These results indicate that Ao4g24 has crucial functions in sporulation, trap formation, and pathogenicity in NT fungi. Our study provides a reference for understanding the role of unidentified genes in mycelium growth and trap formation in NT fungi.
RESUMEN
Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.
Asunto(s)
Carbono , Fertilizantes , Nitrógeno , Oryza , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Nitrógeno/metabolismo , Carbono/metabolismo , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo , Preparaciones de Acción RetardadaRESUMEN
Guanine nucleotide-binding proteins of the ADP ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) are essential for diverse biological processes. Here, two homologous Arf-GAPs, Age1 (AoAge1) and Age2 (AoAge2), were identified in the widespread nematode-trapping fungus Arthrobotrys oligospora. Our results demonstrated that AoAge1, especially AoAge2, played crucial roles in mycelial growth, sporulation, trap production, stress response, mitochondrial activity, DNA damage, endocytosis, reactive oxygen species production, and autophagy. Notably, transcriptome data revealed that approximately 62.7% of the genes were directly or indirectly regulated by AoAge2, and dysregulated genes in Aoage2 deletion were enriched in metabolism, ribosome biogenesis, secondary metabolite biosynthesis, and autophagy. Furthermore, Aoage2 inactivation caused a substantial reduction in several compounds compared to the wild-type strain. Based on these results, a regulatory network for AoAge1 and AoAge2 was proposed and verified using a yeast two-hybrid assay. Based on our findings, AoAge1 and AoAge2 are essential for vegetative growth and mycelial development. Specifically, AoAge2 is required for sporulation and trapping morphogenesis. Our results demonstrated the critical functions of AoAge1 and AoAge2 in mycelial growth, diverse cellular processes, and pathogenicity, offering deep insights into the functions and regulatory mechanisms of Arf-GAPs in nematode-trapping fungi.
Asunto(s)
Ascomicetos , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario , Esporas Fúngicas , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Autofagia , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Micelio/genética , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Animales , Transcriptoma , Virulencia , Daño del ADN , Perfilación de la Expresión GénicaRESUMEN
Prdx2 is a peroxiredoxin (Prx) family protein that protects cells from attack via reactive oxygen species (ROS), and it has an important role in improving the resistance and scavenging capacity of ROS in fungi. Arthrobotrys oligospora is a widespread nematode-trapping fungus that can produce three-dimensional nets to capture and kill nematodes. In this study, AoPrdx2, a homologous protein of Prx5, was investigated in A. oligospora via gene disruption, phenotypic analysis, and metabolomics. The deletion of Aoprdx2 resulted in an increase in the number of mycelial septa and a reduction in the number of nuclei and spore yield. Meanwhile, the absence of Aoprdx2 increased sensitivity to oxidative stresses, whereas the ∆Aoprdx2 mutant strain resulted in higher ROS levels than that of the wild-type (WT) strain. In particular, the inactivation of Aoprdx2 severely influenced trap formation and pathogenicity; the number of traps produced by the ∆Aoprdx2 mutant strain was remarkably reduced and the number of mycelial rings of traps in the ∆Aoprdx2 mutant strain was less than that of the WT strain. In addition, the abundance of metabolites in the ∆Aoprdx2 mutant strain was significantly downregulated compared with the WT strain. These results indicate that AoPrdx2 plays an indispensable role in the scavenging of ROS, trap morphogenesis, and secondary metabolism.
RESUMEN
The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.
RESUMEN
Poor grain-filling initiation in inferior spikelets severely impedes rice yield improvement, while photo-assimilates from source leaves can greatly stimulate the initiation of inferior grain-filling (sink). To investigate the underlying mechanism of source-sink interaction, a two-year field experiment was conducted in 2019 and 2020 using two large-panicle rice cultivars (CJ03 and W1844). The treatments included intact panicles and partial spikelet removal. These two cultivars showed no significant difference in the number of spikelets per panicle. However, after removing spikelet, W1844 showed higher promotion on 1000-grain weight and seed-setting rate than CJ03, particularly for inferior spikelets. The reason was that the better sink activity of W1844 led to a more effective initiation of inferior grain-filling compared to CJ03. The inferior grain weight of CJ03 and W1844 did not show a significant increase until 8 days poster anthesis (DPA), which follows a similar pattern to the accumulation of photo-assimilates in leaves. After removing spikelets, the source leaves of W1844 exhibited lower photosynthetic inhibition compared to CJ03, as well as stronger metabolism and transport of photo-assimilates. Although T6P levels remained constant in both cultivars under same conditions, the source leaves of W1844 showed notable downregulation of SnRK1 activity and upregulation of phytohormones (such as abscisic acid, cytokinins, and auxin) after removing spikelets. Hence, the high sink strength of inferior spikelets plays a role in triggering the enhancement of source strength in rice leaves, thereby fulfilling grain-filling initiation demands.
RESUMEN
Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops.
Asunto(s)
Brassica napus , Brassica napus/genética , Fitomejoramiento , Semillas/genética , Fenotipo , Genómica , FlavonoidesRESUMEN
Multidrug resistance (Mdr) proteins are critical proteins for maintenance of drug resistance in fungi. Mdr1 has been extensively studied in Candida albicans; its role in other fungi is largely unknown. In this study, we identified a homologous protein of Mdr (AoMdr1) in the nematode-trapping (NT) fungus Arthrobotrys oligospora. It was found that the deletion of Aomdr1 resulted in a significant reduction in the number of hyphal septa and nuclei as well as increased sensitivity to fluconazole and resistance to hyperosmotic stress and SDS. The deletion of Aomdr1 also led to a remarkable increase in the numbers of traps and mycelial loops in the traps. Notably, AoMdr1 was able to regulate mycelial fusion under low-nutrient conditions, but not under nutrient-rich conditions. AoMdr1 was also involved in secondary metabolism, and its deletion caused an increase in arthrobotrisins (specific compounds produced by NT fungi). These results suggest that AoMdr1 plays a crucial role in the fluconazole resistance, mycelial fusion, conidiation, trap formation, and secondary metabolism of A. oligospora. Our study contributes to the understanding of the critical role of Mdr proteins in mycelial growth and the development of NT fungi.
RESUMEN
Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.
RESUMEN
Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid (TCA) cycle and is essential for energy balance, growth, and tolerance to cold and salt stresses in plants. However, the role of MDH in filamentous fungi is still largely unknown. In this study, we characterized an ortholog of MDH (AoMae1) in a representative nematode-trapping (NT) fungus Arthrobotrys oligospora via gene disruption, phenotypic analysis, and nontargeted metabolomics. We found that the loss of Aomae1 led to a weakening of MDH activity and ATP content, a remarkable decrease in conidia yield, and a considerable increase in the number of traps and mycelial loops. In addition, the absence of Aomae1 also caused an obvious reduction in the number of septa and nuclei. In particular, AoMae1 regulates hyphal fusion under low nutrient conditions but not in nutrient-rich conditions, and the volumes and sizes of the lipid droplets dynamically changed during trap formation and nematode predation. AoMae1 is also involved in the regulation of secondary metabolites such as arthrobotrisins. These results suggest that Aomae1 has an important role in hyphal fusion, sporulation, energy production, trap formation, and pathogenicity in A. oligospora. Our results enhance the understanding of the crucial role that enzymes involved in the TCA cycle play in the growth, development, and pathogenicity of NT fungi.
RESUMEN
Mitophagy is one of the most important cellular processes to ensure mitochondrial quality control, which aims to transport damaged, dysfunctional, or excess mitochondria for degradation and reuse. Here, we determined the function of AoAtg11 and AoAtg33, two orthologous autophagy-related proteins involved in yeast mitophagy, in the typical nematode-trapping fungus Arthrobotrys oligospora. Deletion of Aoatg11 and Aoatg33 impairs mitophagy, mitochondrial morphology and activity, autophagy, cell apoptosis, reactive oxygen species levels, lipid droplet accumulation, and endocytosis. These combined effects resulted in slow vegetative growth; reduced conidiation, trap formation, cell nucleus, and extracellular protease activity; increased susceptibility to the stress response; and arthrobotrisin production in the ΔAoatg11 and ΔAoatg33 mutants, compared with the wild-type strain. In addition, the absence of Aoatg11 caused an endoplasmic reticulum stress response. Transcriptome analysis revealed that many differentially expressed genes in the ΔAoatg11 mutants were involved in various important cellular processes, such as lipid metabolism, the TCA cycle, mitophagy, nitrogen metabolism, endocytosis, and the MAPK signaling pathway. In conclusion, our study revealed that Aoatg11 and Aoatg33 mediate autophagy and mitophagy in A. oligospora, and provides a basis for elucidating the links between mitophagy and fungal vegetative growth, conidiation, and pathogenicity.
Asunto(s)
Ascomicetos , Nematodos , Animales , Virulencia/genética , Mitofagia , Ascomicetos/metabolismoRESUMEN
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signalling pathway is evolutionarily conserved in eukaryotes and plays a crucial role in defending against external environmental challenges, which can modulate the cellular response to external stimuli. Arthrobotrys oligospora is a typical nematode-trapping fungus that specializes in adhesive networks to kill nematodes. To elucidate the biological roles of the cAMP-PKA signalling pathway, we characterized the orthologous adenylate cyclase AoAcy, a regulatory subunit (AoPkaR), and two catalytic subunits (AoPkaC1 and AoPkaC2) of PKA in A. oligospora by gene disruption, transcriptome, and metabolome analyses. Deletion of Aoacy significantly reduced the levels of cAMP and arthrobotrisins. Results revealed that Aoacy, AopkaR, and AopkaC1 were involved in hyphal growth, trap morphogenesis, sporulation, stress resistance, and autophagy. In addition, Aoacy and AopkaC1 were involved in the regulation of mitochondrial morphology, thereby affecting energy metabolism, whereas AopkaC2 affected sporulation, nuclei, and autophagy. Multi-omics results showed that the cAMP-PKA signalling pathway regulated multiple metabolic and cellular processes. Collectively, these data highlight the indispensable role of cAMP-PKA signalling pathway in the growth, development, and pathogenicity of A. oligospora, and provide insights into the regulatory mechanisms of signalling pathways in sporulation, trap formation, and lifestyle transition.
Asunto(s)
Ascomicetos , Nematodos , Animales , Ascomicetos/genética , Nematodos/microbiología , AMP Cíclico/metabolismo , Morfogénesis , Autofagia/genéticaRESUMEN
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called "traps" to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
RESUMEN
Ssk1, a response regulator of the two-component signaling system, plays an important role in the cellular response to hyperosmotic stress in fungi. Herein, an ortholog of ssk1 (Aossk1) was characterized in the nematode-trapping fungus Arthrobotrys oligospora using gene disruption and multi-phenotypic comparison. The deletion of Aossk1 resulted in defective growth, deformed and swollen hyphal cells, an increased hyphal septum, and a shrunken nucleus. Compared to the wild-type (WT) strain, the number of autophagosomes and lipid droplets in the hyphal cells of the ΔAossk1 mutant decreased, whereas their volumes considerably increased. Aossk1 disruption caused a 95% reduction in conidial yield and remarkable defects in tolerance to osmotic and oxidative stress. Meanwhile, the transcript levels of several sporulation-related genes were significantly decreased in the ΔAossk1 mutant compared to the WT strain, including abaA, brlA, flbC, fluG, and rodA. Moreover, the loss of Aossk1 resulted in a remarkable increase in trap formation and predation efficiency. In addition, many metabolites were markedly downregulated in the ΔAossk1 mutant compared to the WT strain. Our results highlight that AoSsk1 is a crucial regulator of asexual development, stress responses, the secondary metabolism, and pathogenicity, and can be useful in probing the regulatory mechanism underlying the trap formation and lifestyle switching of nematode-trapping fungi.
RESUMEN
AIMS: Phospholipase C (PLC) is a hydrolase involved in signal transduction in eukaryotic cells. This study aimed to understand the function of PLC in the nematode-trapping fungus Arthrobotrys oligospora. METHODS AND RESULTS: Orthologous PLC (AoPLC2) of A. oligospora was functionally analysed using gene disruption and multi-phenotypic analysis. Disrupting Aoplc2 caused a deformation of partial hyphal cells (about 10%) and conidia (about 50%), decreased the number of nuclei in both conidia and hyphal cells, and increased the accumulation of lipid droplets. Meanwhile, the sporulation-related genes fluG and abaA were downregulated in ΔAoplc2 mutants than in the wild-type strain. Moreover, ΔAoplc2 mutants were more sensitive to osmotic stressors. Importantly, the number of traps, electron-dense bodies in traps, and nematicidal activity of ΔAoplc2 mutants were reduced, and the shape of the traps was deformed. In addition, AoPLC2 was involved in the biosynthesis of secondary metabolites in A. oligospora. CONCLUSIONS: AoPLC2 plays an important role in the development of hyphae, spores, and cell nuclei, responses to stress, formation of traps, and predation of nematodes in A. oligospora. SIGNIFICANCE AND IMPACT OF STUDY: This study reveals the various functions of phospholipase C and elucidates the regulation of trap morphogenesis in nematode-trapping fungi.
Asunto(s)
Ascomicetos , Nematodos , Fosfolipasas de Tipo C , Animales , Ascomicetos/enzimología , Ascomicetos/genética , Morfogénesis , Nematodos/microbiología , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Virulencia/genéticaRESUMEN
Autophagy is an evolutionarily conserved process in eukaryotes, which is regulated by autophagy-related genes (ATGs). Arthrobotrys oligospora is a representative species of nematode-trapping (NT) fungi that can produce special traps for nematode predation. To elucidate the biological roles of autophagy in NT fungi, we characterized an orthologous Atg protein, AoAtg5, in A. oligospora. We found that AoATG5 deletion causes a significant reduction in vegetative growth and conidiation, and that the transcript levels of several sporulation-related genes were significantly downregulated during sporulation stage. In addition, the cell nuclei were significantly reduced in the ΔAoATG5 mutant, and the transcripts of several genes involved in DNA biosynthesis, repair, and ligation were significantly upregulated. In ΔAoATG5 mutants, the autophagic process was significantly impaired, and trap formation and nematocidal activity were significantly decreased. Comparative transcriptome analysis results showed that AoAtg5 is involved in the regulation of multiple cellular processes, such as autophagy, nitrogen metabolism, DNA biosynthesis and repair, and vesicular transport. In summary, our results suggest that AoAtg5 is essential for autophagy and significantly contributes to vegetative growth, cell nucleus development, sporulation, trap formation, and pathogenicity in A. oligospora, thus providing a basis for future studies focusing on related mechanisms of autophagy in NT fungi.
Asunto(s)
Ascomicetos/fisiología , Ascomicetos/patogenicidad , Proteína 5 Relacionada con la Autofagia/metabolismo , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Nematodos/microbiología , Animales , Ascomicetos/clasificación , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Núcleo Celular/genética , ADN de Hongos/metabolismo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Mutación , Nitrógeno/metabolismo , Filogenia , Esporas Fúngicas/fisiología , Transcripción Genética , VirulenciaRESUMEN
The poor grain-filling initiation often causes the poor development of inferior spikelets (IS) which limits the yield potential of large panicle rice (Oryza sativa L.). However, it remains unclear why IS often has poor grain-filling initiation. In addressing this problem, this study conducted a field experiment involving two large panicle rice varieties, namely CJ03 and W1844, in way of removing the superior spikelets (SS) during flowering to force enough photosynthate transport to the IS. The results of this study showed that the grain-filling initiation of SS was much earlier than the IS in CJ03 and W1844, whereas the grain-filling initiation of IS in W1844 was evidently more promoted compared with the IS of CJ03 by removing spikelets. The poor sucrose-unloading ability, i.e., carbohydrates contents, the expression patterns of OsSUTs, and activity of CWI, were highly improved in IS of CJ03 and W1844 by removing spikelets. However, there was a significantly higher rise in the efficiency of sucrose to starch metabolism, i.e., the expression patterns of OsSUS4 and OsAGPL1 and activities of SuSase and AGPase, for IS of W1844 than that of CJ03. Removing spikelets also led to the changes in sugar signaling of T6P and SnRK1 level. These changes might be related to the regulation of sucrose to starch metabolism. The findings of this study suggested that poor sucrose-unloading ability delays the grain-filling initiation of IS. Nonetheless, the efficiency of sucrose to starch metabolism is also strongly linked with the grain-filling initiation of IS.
RESUMEN
The cell wall integrity (CWI) pathway is composed of three mitogen-activated protein kinases (MAPKs), Bck1, Mkk1/2, and Slt2, and is one of the main signaling pathways for fungal pathogenesis, cell wall synthesis, and integrity maintenance. In this study, we characterized orthologs of Saccharomyces cerevisiae Bck1 and Mkk1 in the nematode-trapping (NT) fungus Arthrobotrys oligospora by multiple phenotypic comparison, and the regulation of conidiation and cell wall synthesis was analyzed using real-time PCR (RT-PCR). Both ΔAoBck1 and ΔAoMkk1 mutants showed severe defects in vegetative growth, cell nucleus number, and stress resistance. Both the mutants were unable to produce spores, and the transcription of several genes associated with sporulation and cell wall biosynthesis was markedly downregulated during the conidiation stage. Further, cell walls of the ΔAoBck1 and ΔAoMkk1 mutants were severely damaged, and the Woronin body failed to respond to cellular damage. In particular, the mutants lost the ability to produce mycelial traps for nematode predation. Taken together, AoBck1 and AoMkk1 play a conserved role in mycelial growth and development, CWI, conidiation, multi-stress tolerance, trap formation, and pathogenicity. We highlighted the role of AoBck1 and AoMkk1 in regulating the Woronin body response to cellular damage and cell nucleus development in A. oligospora.
RESUMEN
MAIN CONCLUSION: The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar 'Zhongshuang 11' (ZS11) and the white-flowered inbred line 'White Petal' (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.