Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Adv ; 8(11): eabn1905, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302858

RESUMEN

Understanding and optimizing the key mechanisms used in the synthesis of pitch-based carbon fibers (CFs) are challenging, because unlike polyacrylonitrile-based CFs, the feedstock for pitch-based CFs is chemically heterogeneous, resulting in complex fabrication leading to inconsistency in the final properties. In this work, we use molecular dynamics simulations to explore the processing and chemical phase space through a framework of CF models to identify their effects on elastic performance. The results are in excellent agreement with experiments. We find that density, followed by alignment, and functionality of the molecular constituents dictate the CF mechanical properties more strongly than their size and shape. Last, we propose a previously unexplored fabrication route for high-modulus CFs. Unlike graphitization, this results in increased sp3 fraction, achieved via generating high-density CFs. In addition, the high sp3 fraction leads to the fabrication of CFs with isometric compressive and tensile moduli, enabling their potential applications for compressive loading.

2.
Nano Lett ; 22(2): 545-553, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34981943

RESUMEN

High-Tc molecular magnets have amassed much promise; however, the long-standing obstacle for its practical applications is the inaccessibility of high-temperature molecular magnets showing dynamic and nonvolatile magnetization control. In addition, its functional durability is prone to degradation in oxygen and heat. Here, we introduce a rapid prototyping and stabilizing strategy for high Tc (360 K) molecular magnets with precise spatial control in geometry. The printed molecular magnets are thermally stable up to 400 K and air-stable for over 300 days, a significant improvement in its lifetime and durability. X-ray magnetic circular dichroism and computational modeling reveal the water ligands controlling magnetic exchange interaction of molecular magnets. The molecular magnets also show dynamical and reversible tunability of magnetic exchange interactions, enabling a colossal working temperature window of 86 K (from 258 to 344 K). This study provides a pathway to flexible, lightweight, and durable molecular magnetic devices through additive manufacturing.

3.
JACS Au ; 1(11): 1904-1914, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34841409

RESUMEN

Understanding and broad screening Li interaction energetics with surfaces are key to the development of materials for a wide range of applications including Li-based electrochemical capacitors, Li sensors, Li separation membranes, and Li-ion batteries. In this work, we build a high-throughput screening scheme to screen Li adsorption energetics on 2D metallic materials. First, density functional theory and graph convolution networks are utilized to calculate the minimum Li adsorption energies for some 2D metallic materials. The data is then used to find a dependence of the minimum Li adsorption energies on the sum of ionization potential, work function of the 2D metal, and coupling energy between Li+ and substrate, and the dependence is used to screen all 2D metallic materials. Physics-simplified learning by splitting the property into different contributions and learning or calculating each component is shown to have higher accuracy and transferability for machine learning of complex materials properties.

4.
Adv Mater ; 33(39): e2103000, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34397123

RESUMEN

The competing and non-equilibrium phase transitions, involving dynamic tunability of cooperative electronic and magnetic states in strongly correlated materials, show great promise in quantum sensing and information technology. To date, the stabilization of transient states is still in the preliminary stage, particularly with respect to molecular electronic solids. Here, a dynamic and cooperative phase in potassium-7,7,8,8-tetracyanoquinodimethane (K-TCNQ) with the control of pulsed electromagnetic excitation is demonstrated. Simultaneous dynamic and coherent lattice perturbation with 8 ns pulsed laser (532 nm, 15 MW cm-2 , 10 Hz) in such a molecular electronic crystal initiates a stable long-lived (over 400 days) conducting paramagnetic state (≈42 Ωcm), showing the charge-spin bistability over a broad temperature range from 2 to 360 K. Comprehensive noise spectroscopy, in situ high-pressure measurements, electron spin resonance (ESR), theoretical model, and scanning tunneling microscopy/spectroscopy (STM/STS) studies provide further evidence that such a transition is cooperative, requiring a dedicated charge-spin-lattice decoupling to activate and subsequently stabilize nonequilibrium phase. The cooperativity triggered by ultrahigh-strain-rate (above 106 s- 1 ) pulsed excitation offers a collective control toward the generation and stabilization of strongly correlated electronic and magnetic orders in molecular electronic solids and offers unique electro-magnetic phases with technological promises.

5.
Small ; 17(33): e2102045, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34235845

RESUMEN

Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL ) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m-1 K-1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.

6.
Proc Natl Acad Sci U S A ; 117(44): 27204-27210, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33077582

RESUMEN

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field-assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.

7.
Nano Lett ; 20(11): 7852-7859, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054240

RESUMEN

Vertical van der Waals (vdWs) heterostructures based on layered materials are attracting interest as a new class of quantum materials, where interfacial charge-transfer coupling can give rise to fascinating strongly correlated phenomena. Transition metal chalcogenides are a particularly exciting material family, including ferromagnetic semiconductors, multiferroics, and superconductors. Here, we report the growth of an organic-inorganic heterostructure by intercalating molecular electron donating bis(ethylenedithio)tetrathiafulvalene into (Li,Fe)OHFeSe, a layered material in which the superconducting ground state results from the intercalation of hydroxide layer. Molecular intercalation in this heterostructure induces a transformation from a paramagnetic to spin-glass-like state that is sensitive to the stoichiometry of molecular donor and an applied magnetic field. Besides, electron-donating molecules reduce the electrical resistivity in the heterostructure and modify its response to laser illumination. This hybrid heterostructure provides a promising platform to study emerging magnetic and electronic behaviors in strongly correlated layered materials.

8.
Nat Commun ; 11(1): 823, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041958

RESUMEN

Lead Iodide (PbI2) is a large bandgap 2D layered material that has potential for semiconductor applications. However, atomic level study of PbI2 monolayer has been limited due to challenges in obtaining thin crystals. Here, we use liquid exfoliation to produce monolayer PbI2 nanodisks (30-40 nm in diameter and > 99% monolayer purity) and deposit them onto suspended graphene supports to enable atomic structure study of PbI2. Strong epitaxial alignment of PbI2 monolayers with the underlying graphene lattice occurs, leading to a phase shift from the 1 T to 1 H structure to increase the level of commensuration in the two lattice spacings. The fundamental point vacancy and nanopore structures in PbI2 monolayers are directly imaged, showing rapid vacancy migration and self-healing. These results provide a detailed insight into the atomic structure of monolayer PbI2, and the impact of the strong van der Waals interaction with graphene, which has importance for future applications in optoelectronics.

9.
Adv Mater ; 31(46): e1904251, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31559669

RESUMEN

2D crystals are typically uniform and periodic in-plane with stacked sheet-like structure in the out-of-plane direction. Breaking the in-plane 2D symmetry by creating unique lattice structures offers anisotropic electronic and optical responses that have potential in nanoelectronics. However, creating nanoscale-modulated anisotropic 2D lattices is challenging and is mostly done using top-down lithographic methods with ≈10 nm resolution. A phase transformation mechanism for creating 2D striated lattice systems is revealed, where controlled thermal annealing induces Se loss in few-layered PdSe2 and leads to 1D sub-nm etched channels in Pd2 Se3 bilayers. These striated 2D crystals cannot be described by a typical unit cells of 1-2 Å for crystals, but rather long range nanoscale periodicity in each three directions. The 1D channels give rise to localized conduction states, which have no bulk layered counterpart or monolayer form. These results show how the known family of 2D crystals can be extended beyond those that exist as bulk layered van der Waals crystals by exploiting phase transformations by elemental depletion in binary systems.

10.
J Am Chem Soc ; 141(33): 13074-13080, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31361482

RESUMEN

Vacancy-ordered lead-free perovskites with more-stable crystalline structures have been intensively explored as the alternatives for resolving the toxic and long-term stability issues of lead halide perovskites (LHPs). The dispersive energy bands produced by the closely packed halide octahedral sublattice in these perovskites are meanwhile anticipated to facility the mobility of charge carriers. However, these perovskites suffer from unexpectedly poor charge carrier transport. To tackle this issue, we have employed the ultrafast, elemental-specific X-ray transient absorption (XTA) spectroscopy to directly probe the photoexcited electronic and structural dynamics of a prototypical vacancy-ordered lead-free perovskite (Cs3Bi2Br9). We have discovered that the photogenerated holes quickly self-trapped at Br centers, simultaneously distorting the local lattice structure, likely forming small polarons in the configuration of Vk center (Br2- dimer). More significantly, we have found a surprisingly long-lived, structural distorted state with a lifetime of ∼59 µs, which is ∼3 orders of magnitude slower than that of the charge carrier recombination. Such long-lived structural distortion may produce a transient "background" under continuous light illumination, influencing the charge carrier transport along the lattice framework.

11.
Nat Commun ; 10(1): 3112, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308363

RESUMEN

Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoCx, WCx, and CoCx) on versatile substrates using a CO2 laser. The laser-sculptured polycrystalline carbides (macroporous, ~10-20 nm wall thickness, ~10 nm crystallinity) show high energy storage capability, hierarchical porous structure, and higher thermal resilience than MXenes and other laser-ablated carbon materials. A flexible supercapacitor made of MoCx demonstrates a wide temperature range (-50 to 300 °C). Furthermore, the sculptured microstructures endow the carbide network with enhanced visible light absorption, providing high solar energy harvesting efficiency (~72 %) for steam generation. The laser-based, scalable, resilient, and low-cost manufacturing process presents an approach for construction of carbides and their subsequent applications.

12.
Nano Lett ; 16(8): 4763-72, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27388115

RESUMEN

Recently, the domains of low-dimensional (low-D) materials and disordered materials have been brought together by the demonstration of several new low-D, disordered systems. The thermal transport properties of these systems are not well-understood. Using amorphous graphene and glassy diamond nanothreads as prototype systems, we establish how structural disorder affects vibrational energy transport in low-dimensional, but disordered, materials. Modal localization analysis, molecular dynamics simulations, and a generalized model together demonstrate that the thermal transport properties of these materials exhibit both similarities and differences from disordered 3D materials. In analogy with 3D, the low-D disordered systems exhibit both propagating and diffusive vibrational modes. In contrast to 3D, however, the diffuson contribution to thermal transport in these low-D systems is shown to be negligible, which may be a result of inherent differences in the nature of random walks in lower dimensions. Despite the lack of diffusons, the suppression of thermal conductivity due to disorder in low-D systems is shown to be mild or comparable to 3D. The mild suppression originates from the presence of low-frequency vibrational modes that maintain a well-defined polarization and help preserve the thermal conductivity in the presence of disorder.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056316, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22181507

RESUMEN

Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was, however, neither observed in experiment [A. Passian et al., Phys. Rev. Lett. 90, 124503 (2003)], nor captured in the latest numerical study [J. Nabeth et al., Phys. Rev. E 83, 066306 (2011)]. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. The discovered phenomenon could find its applications in novel mechanisms for pressure sensing and actuation.


Asunto(s)
Física/métodos , Algoritmos , Simulación por Computador , Gases , Calor , Cinética , Modelos Estadísticos , Modelos Teóricos , Método de Montecarlo , Presión , Propiedades de Superficie , Temperatura
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036308, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21230172

RESUMEN

The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA