Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Food Chem ; 460(Pt 3): 140771, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39128369

RESUMEN

Heat stress in summer causes softening disorder in papaya but the molecular mechanism is not clear. In this study, papaya fruit stored at 35 °C showed a softening disorder termed rubbery texture. Analysis of the transcriptome and metabolome identified numerous differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) between the fruit stored at 25 °C and 35 °C. The DEGs and DAMs related to lignin biosynthesis were upregulated, while those related to ethylene biosynthesis, sucrose metabolism, and cell wall degradation were downregulated under heat stress. Co-expression network analysis highlighted the correlation between the DEGs and metabolites associated with lignin biosynthesis, ethylene biosynthesis, and cell wall degradation under heat stress. Finally, the correlation analysis identified the key factors regulating softening disorder under heat stress. The study's findings reveal that heat stress inhibited papaya cell wall degradation and ethylene production, delaying fruit ripening and softening and ultimately resulting in a rubbery texture.

2.
Technol Cancer Res Treat ; 23: 15330338241274289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149935

RESUMEN

Introduction: In recent years, the development of drug-eluting embolization beads that can be imaged has become a hot research topic in regard to meeting clinical needs. In our previous study, we successfully developed nano-assembled microspheres (NAMs) for multimodal imaging purposes. NAMs can not only be visualized under CT/MR/Raman imaging but can also load clinically required doses of doxorubicin. It is important to systematically compare the pharmacokinetics of NAMs with those of commercially available DC Beads and CalliSpheres to evaluate the clinical application potential of NAMs. Methods: In our study, we compared NAMs with two types of drug-eluting beads (DEBs) in terms of irinotecan, drug-loading capacity, release profiles, microsphere diameter variation, and morphological characteristics. Results: Our results indicate that NAMs had an irinotecan loading capacity similar to those of DC Beads and CalliSpheres but exhibited better sustained release in vitro. Conclusion: NAMs have great potential for application in transcatheter arterial chemoembolization for the treatment of colorectal cancer liver metastases.


Asunto(s)
Irinotecán , Microesferas , Imagen Multimodal , Irinotecán/administración & dosificación , Irinotecán/farmacología , Humanos , Imagen Multimodal/métodos , Portadores de Fármacos/química , Liberación de Fármacos , Quimioembolización Terapéutica/métodos , Sistemas de Liberación de Medicamentos , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/diagnóstico por imagen , Camptotecina/análogos & derivados , Camptotecina/administración & dosificación , Camptotecina/farmacología
3.
ACS Appl Nano Mater ; 7(13): 15317-15324, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022450

RESUMEN

Understanding the thermoelastic response of a nanostructure is crucial for the choice of materials and interfaces in electronic devices with improved and tailored transport properties at the nanoscale. Here, we show how the deposition of a MoS2 monolayer can strongly modify the nanoscale thermoelastic dynamics of silicon substrates close to their interface. We demonstrate this by creating a transient grating with extreme ultraviolet light, using ultrashort free-electron laser pulses, whose ≈84 nm period is comparable to the size of elements typically used in nanodevices, such as electric contacts and nanowires. The thermoelastic response, featuring coherent acoustic waves and incoherent relaxation, is tangibly modified by the presence of monolayer MoS2. Namely, we observed a major reduction of the amplitude of the surface mode, which is almost suppressed, while the longitudinal mode is basically unperturbed, aside from a faster decay of the acoustic modulations. We interpret this behavior as a selective modification of the surface elasticity, and we discuss the conditions to observe such effect, which may be of immediate relevance for the design of Si-based nanoscale devices.

4.
Biomolecules ; 14(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38927010

RESUMEN

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Asunto(s)
Queratinocitos , PPAR delta , PPAR-beta , Estearoil-CoA Desaturasa , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , PPAR-beta/metabolismo , PPAR-beta/genética , Animales , Ratones , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Grasos/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Humanos , Ácido Oléico/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
5.
Radiother Oncol ; 197: 110328, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761884

RESUMEN

BACKGROUND AND PURPOSE: Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC. MATERIAL AND METHODS: 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts. Their clinical data, pretreatment T2-weighted images (T2WI) were retrieved and analyzed. Radiomics models were constructed using machine learning methods with features extracted and screen from sagittal and axial T2WI. A nomogram for recurrence prediction was build and evaluated using multivariable logistic regression analysis integrating radiomic signature and adjuvant treatments. RESULTS: A total of 8 radiomic features were screened out of 1020 extracted features. The extreme gradient boosting (XGboost) model based on MRI radiomic features performed best in recurrence prediction with an area under curve (AUC) of 0.833, 0.822 in the internal and external validation cohorts, respectively. The nomogram integrating radiomic signature and clinical factors achieved an AUC of 0.806, 0.718 in the internal and external validation cohorts, respectively, for recurrence risk prediction for ESCC. CONCLUSION: In this study, the nomogram integrating T2WI radiomic signature and clinical factors is valuable to predict the recurrence risk, thereby allowing timely planning for effective treatments for ESCC with high risk of recurrence.


Asunto(s)
Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia , Nomogramas , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/terapia , Imagen por Resonancia Magnética/métodos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Persona de Mediana Edad , Medición de Riesgo , Adulto , Estadificación de Neoplasias , Anciano , Aprendizaje Automático , Estudios Retrospectivos , Radiómica
6.
Nano Lett ; 24(15): 4319-4329, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567828

RESUMEN

The discovery of magnetic order at the 2D limit has sparked new exploration of van der Waals magnets for potential use in spintronics, magnonics, and quantum information applications. However, many of these materials feature low magnetic ordering temperatures and poor air stability, limiting their fabrication into practical devices. In this Mini-Review, we present a promising material for fundamental studies and functional use: CrSBr, an air-stable, two-dimensional magnetic semiconductor. Our discussion highlights experimental research on bulk CrSBr, including quasi-1D semiconducting properties, A-type antiferromagnetic order (TN = 132 K), and strong coupling between its electronic and magnetic properties. We then discuss the behavior of monolayer and few-layer flakes and present a perspective on promising avenues for further studies on CrSBr.

7.
Skin Res Technol ; 30(4): e13698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634154

RESUMEN

BACKGROUND: Dermoscopy is a common method of scalp psoriasis diagnosis, and several artificial intelligence techniques have been used to assist dermoscopy in the diagnosis of nail fungus disease, the most commonly used being the convolutional neural network algorithm; however, convolutional neural networks are only the most basic algorithm, and the use of object detection algorithms to assist dermoscopy in the diagnosis of scalp psoriasis has not been reported. OBJECTIVES: Establishment of a dermoscopic modality diagnostic framework for scalp psoriasis based on object detection technology and image enhancement to improve diagnostic efficiency and accuracy. METHODS: We analyzed the dermoscopic patterns of scalp psoriasis diagnosed at 72nd Group army hospital of PLA from January 1, 2020 to December 31, 2021, and selected scalp seborrheic dermatitis as a control group. Based on dermoscopic images and major dermoscopic patterns of scalp psoriasis and scalp seborrheic dermatitis, we investigated a multi-network fusion object detection framework based on the object detection technique Faster R-CNN and the image enhancement technique contrast limited adaptive histogram equalization (CLAHE), for assisting in the diagnosis of scalp psoriasis and scalp seborrheic dermatitis, as well as to differentiate the major dermoscopic patterns of the two diseases. The diagnostic performance of the multi-network fusion object detection framework was compared with that between dermatologists. RESULTS: A total of 1876 dermoscopic images were collected, including 1218 for scalp psoriasis versus 658 for scalp seborrheic dermatitis. Based on these images, training and testing are performed using a multi-network fusion object detection framework. The results showed that the test accuracy, specificity, sensitivity, and Youden index for the diagnosis of scalp psoriasis was: 91.0%, 89.5%, 91.0%, and 0.805, and for the main dermoscopic patterns of scalp psoriasis and scalp seborrheic dermatitis, the diagnostic results were: 89.9%, 97.7%, 89.9%, and 0.876. Comparing the diagnostic results with those of five dermatologists, the fusion framework performs better than the dermatologists' diagnoses. CONCLUSIONS: Studies have shown some differences in dermoscopic patterns between scalp psoriasis and scalp seborrheic dermatitis. The proposed multi-network fusion object detection framework has higher diagnostic performance for scalp psoriasis than for dermatologists.


Asunto(s)
Dermatitis Seborreica , Psoriasis , Neoplasias Cutáneas , Humanos , Cuero Cabelludo , Inteligencia Artificial , Redes Neurales de la Computación , Dermoscopía/métodos , Neoplasias Cutáneas/diagnóstico
8.
J Am Chem Soc ; 146(14): 10052-10059, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536668

RESUMEN

Spin-polarized electrons can improve the efficiency and selectivity of photo- and electro-catalytic reactions, as demonstrated in the past with magnetic or magnetized catalysts. Here, we present a scheme in which spin-polarized charge separation occurs at the interfaces of nonmagnetic semiconductors and molecular films in the absence of a magnetic field. We take advantage of the spin-valley-locked band structure and valley-dependent optical selection rule in group VI transition metal dichalcogenide (TMDC) monolayers to generate spin-polarized electron-hole pairs. Photoinduced electron transfer from WS2 to fullerene (C60) and hole transfer from MoSe2 to phthalocyanine (H2Pc) are found to result in spin polarization lifetimes that are 1 order of magnitude longer than those in the TMDC monolayers alone. Our findings connect valleytronic properties of TMDC monolayers to spin-polarized interfacial charge transfer and suggest a viable route toward spin-selective photocatalysis.

9.
Animals (Basel) ; 14(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38473174

RESUMEN

Pigs can be colonized with Salmonella enterica and become established carriers. However, the mechanisms of the host's response to Salmonella enterica infection are largely unclear. This study was constructed with the Salmonella enterica infection model in vitro using porcine intestinal epithelial cells (IPEC-J2). Transcriptome profiling of IPEC-J2 cells was carried out to characterize the effect of Salmonella enterica infection and lipopolysaccharide (LPS) treatment, in which LPS-induced inflammation was a positive control. At first, Salmonella enterica infection increased the cell apoptosis rate and induced an inflammation response in IPEC-J2. Then, the up-regulated genes were enriched in metabolic pathways, such as those for bile secretion and mineral absorption, while down-regulated genes were enriched in immune-related pathways, such as the Toll-like receptor signaling and p53 signaling pathways. Moreover, we found 368 up-regulated genes and 101 down-regulated genes in common. Then, an integrative analysis of the transcriptomic profile under Salmonella enterica infection and LPS treatment was conducted, and eight up-regulated genes and one down-regulated gene were detected. Among them, AQP8 is one critical gene of the bile secretion pathway, and its mRNA and protein expression were increased significantly under Salmonella enterica infection and LPS treatment. Thus, the AQP8 gene and bile secretion pathway may be important in IPEC-J2 cells under Salmonella enterica infection or LPS treatment.

10.
Plant J ; 118(6): 1937-1954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491870

RESUMEN

Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.


Asunto(s)
Respuesta al Choque por Frío , Frutas , Regulación de la Expresión Génica de las Plantas , Musa , Proteínas de Plantas , Musa/genética , Musa/metabolismo , Musa/fisiología , Frutas/genética , Frutas/metabolismo , Frutas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Pared Celular/metabolismo , Almidón/metabolismo
11.
Plant Biotechnol J ; 22(6): 1703-1723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319003

RESUMEN

It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.


Asunto(s)
Ácido Abscísico , Calcio , Carica , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Carica/metabolismo , Carica/genética , Carica/crecimiento & desarrollo , Calcio/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calmodulina/metabolismo , Calmodulina/genética , Reguladores del Crecimiento de las Plantas/metabolismo
12.
Nature ; 625(7995): 483-488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233620

RESUMEN

Heavy-fermion metals are prototype systems for observing emergent quantum phases driven by electronic interactions1-6. A long-standing aspiration is the dimensional reduction of these materials to exert control over their quantum phases7-11, which remains a significant challenge because traditional intermetallic heavy-fermion compounds have three-dimensional atomic and electronic structures. Here we report comprehensive thermodynamic and spectroscopic evidence of an antiferromagnetically ordered heavy-fermion ground state in CeSiI, an intermetallic comprising two-dimensional (2D) metallic sheets held together by weak interlayer van der Waals (vdW) interactions. Owing to its vdW nature, CeSiI has a quasi-2D electronic structure, and we can control its physical dimension through exfoliation. The emergence of coherent hybridization of f and conduction electrons at low temperature is supported by the temperature evolution of angle-resolved photoemission and scanning tunnelling spectra near the Fermi level and by heat capacity measurements. Electrical transport measurements on few-layer flakes reveal heavy-fermion behaviour and magnetic order down to the ultra-thin regime. Our work establishes CeSiI and related materials as a unique platform for studying dimensionally confined heavy fermions in bulk crystals and employing 2D device fabrication techniques and vdW heterostructures12 to manipulate the interplay between Kondo screening, magnetic order and proximity effects.

13.
Sci Adv ; 10(5): eadj4060, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295176

RESUMEN

Since the seminal work on MoS2, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.2 ns. Scanning tunneling microscopy reveals that photocarrier generation is intimately related to mid-gap defects, likely via trap-mediated Auger scattering. Only in state-of-the-art quality monolayers, with mid-gap trap densities as low as 109 cm-2, does intrinsic exciton physics start to dominate the terahertz response. Our findings reveal the necessity of knowing the defect density in understanding photophysics of TMDCs.

14.
Plant Cell Physiol ; 65(1): 49-67, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37767757

RESUMEN

As zinc finger protein transcription factors (TFs), the molecular mechanism of Cys-Cys-Cys-His (CCCH) TFs in regulating plant development, growth and stress response has been well studied. However, the roles of CCCH TFs in fruit ripening are still obscure. Herein, we report that MaCCCH33-like2 TF and its associated proteins modulate the fruit softening of 'Fenjiao' bananas. MaCCCH33-like2 interacts directly with the promoters of three genes: isoamylase2 (MaISA2), sugar transporter14-like (MaSUR14-like) and ß-d-xylosidase23 (MaXYL23), all of which are responsible for encoding proteins involved in the degradation of starch and cell wall components. Additionally, MaCCCH33-like2 forms interactions with abscisic acid-insensitive 5 (ABI5)-like and ethylene F-box protein 1 (MaEBF1), resulting in enhanced binding and activation of promoters of genes related to starch and cell wall degradation. When MaCCCH33-like2 is transiently and ectopically overexpressed in 'Fenjiao' banana and tomato fruit, it facilitates softening and ripening processes by promoting the degradation of cell wall components and starch and the production of ethylene. Conversely, the temporary silencing of MaCCCH33-like2 using virus-induced gene silencing (VIGS) inhibits softening and ripening in the 'Fenjiao' banana by suppressing ethylene synthesis, as well as starch and cell wall degradation. Furthermore, the promoter activity of MaCCCH33-like2 is regulated by MaABI5-like. Taken together, we have uncovered a novel MaCCCH33-like2/MaEBF1/MaABI5-like module that participates in fruit softening regulation in bananas.


Asunto(s)
Musa , Almidón , Almidón/metabolismo , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Dedos de Zinc , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Nano Lett ; 23(24): 11621-11629, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38071655

RESUMEN

Two-dimensional (2D) transition metal dichalcogenides (TMDC) and their moiré interfaces have been demonstrated for correlated electron states, including Mott insulators and electron/hole crystals commensurate with moiré superlattices. Here we present spectroscopic evidence for ordered bosons─interlayer exciton crystals in a WSe2/MoSe2/WSe2 trilayer, where the enhanced Coulomb interactions over those in heterobilayers have been predicted to result in exciton ordering. Ordered interlayer excitons in the trilayer are characterized by negligible mobility and by sharper PL peaks persisting to an exciton density of nex ∼ 1012 cm-2, which is an order of magnitude higher than the corresponding limit in the heterobilayer. We present evidence for the predicted quadrupolar exciton crystal and its transitions to dipolar excitons either with increasing nex or by an applied electric field. These ordered interlayer excitons may serve as models for the exploration of quantum phase transitions and quantum coherent phenomena.

16.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069055

RESUMEN

The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing annually, and emerging evidence suggests that the gut microbiota plays a causative role in the development of NAFLD. However, the role of gut microbiota in the development of NAFLD remains unclear and warrants further investigation. Thus, C57BL/6J mice were fed a high-fat diet (HFD), and we found that the HFD significantly induced obesity and increased the accumulation of intrahepatic lipids, along with alterations in serum biochemical parameters. Moreover, it was observed that the HFD also impaired gut barrier integrity. It was revealed via 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Colidextribacter, Lachnospiraceae-NK4A136-group, Acetatifactor, and Erysipelatoclostridium. Meanwhile, it reduced the abundance of Faecalibaculum, Muribaculaceae, and Coriobacteriaceae-UCG-002. The predicted metabolic pathways suggest that HFD enhances the chemotaxis and functional activity of gut microbiota pathways associated with flagellar assembly, while also increasing the risk of intestinal pathogen colonization and inflammation. And the phosphotransferase system, streptomycin biosynthesis, and starch/sucrose metabolism exhibited decreases. These findings reveal the composition and predictive functions of the intestinal microbiome in NAFLD, further corroborating the association between gut microbiota and NAFLD while providing novel insights into its potential application in gut microbiome research for NAFLD patients.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ratones Endogámicos C57BL
17.
Nat Commun ; 14(1): 7273, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949848

RESUMEN

Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

18.
Polymers (Basel) ; 15(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38006126

RESUMEN

A stereolithography process with thermal assistance is proposed in this work to address the tradeoff between the flowability and the high concentration of solute loadings at room temperature, through which the improved performance of polymers prepared using stereolithography 3D printing can be achieved. For the experiment, polyethylene glycol diacrylate (PEGDA) with a high molecular weight of 4000 is adopted to improve the mechanical properties of 2-Hydroxyethyl methacrylate (HEMA). For the polymer of HEMA, the highest soluble concentration of PEGDA is about 20 wt% at 25 °C (room temperature) while the concentration could be raised up to 40 wt% as the temperature increases to 60 °C. The 3D printing tests showed that the objects could be easily fabricated with the HEMA polymer loaded with 40 wt% of PEGDA through the thermally assisted projection stereolithography technology. By adding the 40 wt% of PEGDA, the Young's modulus has been enhanced by nearly 390% compared to the HEMA resin without solute, of which the Young's modulus is 63.31 ± 2.72 MPa. The results of the cell proliferation test proved that the HEMA resin loaded with PEGDA led to a better biocompatibility compared to the HEMA resin without the loading of the PEGDA solute. All of the results demonstrate that the polymer loaded with high solute is feasible to be precisely 3D-printed using the projection stereolithography process with thermal assistance, and the improved mechanical properties are beneficial for biomedical applications.

19.
Nat Commun ; 14(1): 6200, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794007

RESUMEN

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe2. The ferroelectric domains are visualized through the imaging of the plasmonic response in a graphene monolayer adjacent to the moiré WSe2 bilayers. Specifically, we find that the ferroelectric polarization in moiré domains is imprinted on the plasmonic response of the graphene. Complementary nano-photocurrent measurements demonstrate that the optoelectronic properties of graphene are also modulated by the proximal ferroelectric domains. Our approach represents an alternative strategy for studying moiré ferroelectricity at native length scales and opens promising prospects for (opto)electronic devices.

20.
Genes (Basel) ; 14(9)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37761824

RESUMEN

Flavonoids have anti-inflammatory, antioxidative, and anticarcinogenic effects. Breeding rice varieties rich in flavonoids can prevent chronic diseases such as cancer and cardio-cerebrovascular diseases. However, most of the genes reported are known to regulate flavonoid content in leaves or seedlings. To further elucidate the genetic basis of flavonoid content in rice grains and identify germplasm rich in flavonoids in grains, a set of rice core collections containing 633 accessions from 32 countries was used to determine total flavonoid content (TFC) in brown rice. We identified ten excellent germplasms with TFC exceeding 300 mg/100 g. Using a compressed mixed linear model, a total of 53 quantitative trait loci (QTLs) were detected through a genome-wide association study (GWAS). By combining linkage disequilibrium (LD) analysis, location of significant single nucleotide polymorphisms (SNPs), gene expression, and haplotype analysis, eight candidate genes were identified from two important QTLs (qTFC1-6 and qTFC9-7), among which LOC_Os01g59440 and LOC_Os09g24260 are the most likely candidate genes. We also analyzed the geographic distribution and breeding utilization of favorable haplotypes of the two genes. Our findings provide insights into the genetic basis of TFC in brown rice and could facilitate the breeding of flavonoid-rich varieties, which may be a prevention and adjuvant treatment for cancer and cardio-cerebrovascular diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Oryza/genética , Fitomejoramiento , Antioxidantes , Flavonoides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA