Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Pharm Biomed Anal ; 249: 116382, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39098293

RESUMEN

DPP-IV inhibitors, which are close to the natural hypoglycemic pathway of human physiology and have few side effects, have been extensively employed in the management of type 2 diabetes mellitus (T2DM). However, there are currently no specific blood indicators that can indicate or predict a patient's suitability for DPP-IV inhibitors. In this study, based on the self-developed high-specificity fluorescent substrate glycyl-prolyl-N-butyl-4-amino-1, 8-naphthimide (GP-BAN), a detection method of human serum DPP-IV activity was established and optimized. The method demonstrates a favorable lower limit of detection (LOD) at 0.32 ng/mL and a satisfactory lower limit of quantification (LOQ) of 1.12 ng/mL, and can be used for the detection of DPP-IV activity in trace serum (2 µL). In addition, Vitalliptin and Sitagliptin showed similar IC50 values when human recombinant DPP-IV and human serum were used as enzyme sources, and the intra-day and inter-day precision obtained by the microplate analyzer were less than 15 %. These results indicate that the microplate reader based detection technique has good accuracy, repeatability and reproducibility. A total of 700 volunteers were recruited, and 646 serum samples were tested for DPP-IV activity. The results showed that serum DPP-IV activity was higher in patients with T2DM than in controls (P < 0.01). However, the statistical data of family history of diabetes, gender and age of diabetic patients showed no statistical significance, and there was no contrast difference. The DPP-IV activity of serum in T2DM patients ranged from 2.4 µmol/min/L to 78.6 µmol/min/L, with a huge difference of up to 32-fold. These results suggest that it is necessary to test DPP-IV activity in patients with T2DM when taking DPP-IV inhibitors to determine the applicability of DPP-IV inhibitors in T2DM patients. These results suggest that it is necessary to detect the activity of DPP-IV in blood before taking DPP-IV inhibitors in patients with T2DM to judge the applicability of DPP-IV inhibitors in patients with T2DM.

2.
Bioorg Chem ; 150: 107536, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878751

RESUMEN

Carboxylesterase 1 (CES1), a member of the serine hydrolase superfamily, is involved in a wide range of xenobiotic and endogenous substances metabolic reactions in mammals. The inhibition of CES1 could not only alter the metabolism and disposition of related drugs, but also be benefit for treatment of metabolic disorders, such as obesity and fatty liver disease. In the present study, we aim to develop potential inhibitors of CES1 and reveal the preferred inhibitor structure from a series of synthetic pyrazolones (compounds 1-27). By in vitro high-throughput screening method, we found compounds 25 and 27 had non-competitive inhibition on CES1-mediated N-alkylated d-luciferin methyl ester (NLMe) hydrolysis, while compound 26 competitively inhibited CES1-mediated NLMe hydrolysis. Additionally, Compounds 25, 26 and 27 can inhibit CES1-mediated fluorescent probe hydrolysis in live HepG2 cells with effect. Besides, compounds 25, 26 and 27 could effectively inhibit the accumulation of lipid droplets in mouse adipocytes cells. These data not only provided study basis for the design of newly CES1 inhibitors. The present study not only provided the basis for the development of lead compounds for novel CES1 inhibitors with better performance, but also offered a new direction for the explore of candidate compounds for the treatment of hyperlipidemia and related diseases.


Asunto(s)
Adipocitos , Hidrolasas de Éster Carboxílico , Inhibidores Enzimáticos , Pirazolonas , Humanos , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/citología , Animales , Ratones , Pirazolonas/farmacología , Pirazolonas/química , Pirazolonas/síntesis química , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Células Hep G2 , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células 3T3-L1
3.
Front Pharmacol ; 13: 815235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264954

RESUMEN

Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 µM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the K i values ranging from 0.07 to 0.74 µM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.

4.
Mater Sci Eng C Mater Biol Appl ; 130: 112472, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34702509

RESUMEN

Cancer-derived exosomes or their specific components hold great promise for early diagnosis and precise staging of cancers. This work aimed to construct a novel enzyme-activatable fluorescent substrate for real-time detection and in situ imaging of a key exosomal surface protein CD26 in various biological systems, as well as to reveal the relevance of exosomal CD26 to the tumorigenesis. For these purposes, a group of Gly-Pro amides deriving from several near-infrared fluorophores were designed on the basis of the unique prolyl-cleaving dipeptidease activity of CD26, while molecular docking simulations were applied to assess the possibility of the designed amides as CD26 specific substrates. Following virtual screening and experimental validation, it was observed that GP-ACM displayed the best combination of high sensitivity and excellent specificity to CD26. The sensing and imaging ability of GP-ACM towards CD26 were examined in a range of biological systems, such as living cells, in situ tissues, and the exosomes secreted from cancer cells. Under physiological conditions, GP-ACM can be readily hydrolyzed by CD26 to release the fluorescent product ACM. The fluorescent product emits strong near-infrared fluorescence signals around 660 nm, which can be easily captured by the devices equipped with a fluorescence detector. GP-ACM prolyl-cleaving reaction shows excellent specificity and rapid response towards CD26, while its fluorescent product ACM displays good chemical stability and outstanding photostability. With the help of GP-ACM, CD26 in living cells, tissues and the tumor-secreted exosomes can be real-time monitored and in-situ imaged, while further investigations reveal that the exosomal CD26 activities are abnormally elevated with the progression of colon tumor. Collectively, the present study offers a practical optical assay for real-time monitoring CD26 activities in multiple complex biological systems including the exosomes secreted by tumor cells. The simplicity and effectiveness of this assay hold great potential for facilitating fundamental researches and clinical diagnosis of exosomal CD26 associated diseases.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Neoplasias Colorrectales/diagnóstico por imagen , Dipeptidil Peptidasa 4 , Colorantes Fluorescentes , Humanos , Simulación del Acoplamiento Molecular
5.
Basic Clin Pharmacol Toxicol ; 129(1): 15-25, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33915023

RESUMEN

Polyphyllin I (PPI) and its analogues, including polyphyllin II (PPII), polyphyllin VI (PPVI) and polyphyllin VII (PPVII), are major bioactive compounds isolated from the Chinese herb Chonglou. However, the susceptibilities of PPI and its analogues towards the different cell lines are diversified and the mechanisms are not fully clarified. Thus, the present study aimed to investigate the cytotoxicity of PPI and its analogues on two different cell lines, as well as to explore the underlying mechanisms of these agents via inducing mitochondrial dysfunction. The results showed that PPI and its analogues were cytotoxic agents towards both A549 and HT-29 cells, with IC50 values ranged from 1.0 to 4.5 µmol/L. Further investigations demonstrated that they decreased the mitochondrial membrane potentials of both A549 and HT-29 cells in a dose-dependent manner. Among all tested compounds, PPVI and PPI induced the most obvious changes in Ca2+ haemostasis in these two cell lines. In addition, they could induce the accumulation of ROS in cells and down-regulated the Bcl-2 expression, up-regulated the Bax expression and induced the activity of cleaved caspase-3 in cells. Collectively, our findings clearly demonstrated the cytotoxic differences and mechanisms of PPI and its analogues induced cell apoptosis and could partially explain the anticancer effects of these natural constituents in Chonglou.


Asunto(s)
Diosgenina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Apoptosis/efectos de los fármacos , Neoplasias del Colon , Diosgenina/farmacología , Diosgenina/uso terapéutico , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HT29 , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Esteroides/farmacología , Esteroides/uso terapéutico
6.
Anal Chim Acta ; 1153: 338305, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33714444

RESUMEN

Human UDP-glucuronosyltransferase enzymes (hUGTs), one of the most important classes of conjugative enzymes, are responsible for the glucuronidation and detoxification of a variety of endogenous substances and xenobiotics. Inhibition of hUGTs may cause undesirable effects or adverse drug-drug interactions (DDI) via modulating the glucuronidation rates of endogenous toxins or the drugs that are primarily conjugated by the inhibited hUGTs. Herein, to screen hUGTs inhibitors in a more efficient way, a novel fluorescence-based microplate assay has been developed by utilizing a fluorogenic substrate. Following screening of series of 4-hydroxy-1,8-naphthalimide derivatives, we found that 4-HN-335 is a particularly good substrate for a panel of hUGTs. Under physiological conditions, 4-HN-335 can be readily O-glucuronidated by ten hUGTs, such reactions generate a single O-glucuronide with a high quantum yield (Ф = 0.79) and bring remarkable changes in fluorescence emission. Subsequently, a fluorescence-based microplate assay is developed to simultaneously measure the inhibitory effects of selected compound(s) on ten hUGTs. The newly developed fluorescence-based microplate assay is time- and cost-saving, easy to manage and can be adapted for 96-well microplate format with the Z-factor of 0.92. We further demonstrate the utility of the fluorescence-based assay for high-throughput screening of two compound libraries, resulting in the identification of several potent UGT inhibitors, including natural products and FDA-approved drugs. Collectively, this study reports a novel fluorescence-based microplate assay for simultaneously sensing the residual activities of ten hUGTs, which strongly facilitates the identification and characterization of UGT inhibitors from drugs or herbal constituents and the investigations on UGT-mediated DDI.


Asunto(s)
Inhibidores Enzimáticos , Ensayos Analíticos de Alto Rendimiento , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Glucurónidos , Glucuronosiltransferasa , Humanos , Microsomas Hepáticos
7.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3759-3769, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-32893568

RESUMEN

Schisandra is the mature fruit of Schisandra chinensis(known as "north Schisandra") or S. shenanthera(known as "south Schisandra"). S. chinensis contains a variety of lignans, volatile oils, polysaccharides, organic acids and other chemical constituents; among them, lignans are recognized as the characteristic active components. Clinical studies have found that Schisandra and Schisandra-related products have a better effect in the prevention and treatment of viral hepatitis, drug-induced liver injury, liver cirrhosis, liver failure and other liver diseases. Modern pharmacological studies have demonstrated that Schisandra has a variety of pharmacological activities, such as anti-inflammation, antioxidation, anticancer, regulation of nuclear receptor, antivirus, regulation of cytochrome P450 enzyme, inhibition of liver cell apoptosis and promotion of liver regeneration. This paper reviews the studies about the applications and mechanism of Schisandra in the prevention and treatment of liver diseases, in the expectation of providing guidance for the development of hepatoprotective drugs from Schisandra and the clinical applications of Schisandra-related products.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Lignanos/análisis , Schisandra , Frutas/química , Humanos , Sustancias Protectoras
8.
J Pharm Anal ; 10(3): 263-270, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32612873

RESUMEN

The human UDP-glucuronosyltransferase 1A1 (UGT1A1), one of the most essential conjugative enzymes, is responsible for the metabolism and detoxification of bilirubin and other endogenous substances, as well as many different xenobiotic compounds. Deciphering UGT1A1 relevance to human diseases and characterizing the effects of small molecules on the activities of UGT1A1 requires reliable tools for probing the function of this key enzyme in complex biological matrices. Herein, an easy-to-use assay for highly-selective and sensitive monitoring of UGT1A1 activities in various biological matrices, using liquid chromatography with fluorescence detection (LC-FD), has been developed and validated. The newly developed LC-FD based assay has been confirmed in terms of sensitivity, specificity, precision, quantitative linear range and stability. One of its main advantages is lowering the limits of detection and quantification by about 100-fold in comparison to the previous assay that used the same probe substrate, enabling reliable quantification of lower amounts of active enzyme than any other method. The precision test demonstrated that both intra- and inter-day variations for this assay were less than 5.5%. Furthermore, the newly developed assay has also been successfully used to screen and characterize the regulatory effects of small molecules on the expression level of UGT1A1 in living cells. Overall, an easy-to-use LC-FD based assay has been developed for ultra-sensitive UGT1A1 activities measurements in various biological systems, providing an inexpensive and practical approach for exploring the role of UGT1A1 in human diseases, interactions with xenobiotics, and characterization modulatory effects of small molecules on this conjugative enzyme.

9.
ACS Sens ; 5(7): 1987-1995, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32529833

RESUMEN

Discovery of novel liver injury indicators and development of practical assays to detect target indicator(s) would strongly facilitate the diagnosis of liver disorders. Herein, an alternative biomarker discovery strategy was applied to find suitable endoplasmic reticulum-resident protein(s) as serologic indicator(s) for hepatocyte injury via analysis of the human proteome database among plasma and various organs. Both database searching and preliminary experiments suggested that human carboxylesterase 1A (CES1A), one of the most abundant and hepatic-restricted proteins, could serve as a good serologic indicator for hepatocyte injury. Then, a highly selective and practical bioluminescent sensor was developed for real-time sensing of CES1A in various biological systems including plasma. With the help of this bioluminescent sensor, the release of hepatic CES1A into the extracellular medium or the circulation system could be directly monitored. Further investigations demonstrated that serum activity levels of CES1A were elevated dramatically in mice with liver injury or patients with liver diseases. Collectively, this study provided solid evidence to support that CES1A was a novel serological indicator for hepatocyte injury. Furthermore, the strategy used in this study paved a new way for the rational discovery of practical indicators to monitor the dynamic progression of injury in a given tissue or organ.


Asunto(s)
Carboxilesterasa , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Hepatocitos , Animales , Humanos , Hígado , Ratones
10.
RSC Adv ; 10(7): 3626-3635, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35492646

RESUMEN

Thrombin inhibition therapy is a practical strategy to reduce thrombotic and cardiovascular risks via blocking the formation of blood clots. This study aimed to identify naturally occurring thrombin inhibitors from licorice (one of the most popular edible herbs), as well as to investigate their inhibitory mechanisms. Among all tested licorice constituents, licochalcone A was found as the most efficacious agent against human thrombin (IC50 = 7.96 µM). Inhibition kinetic analyses demonstrated that licochalcone A was a mixed inhibitor against thrombin-mediated Z-Gly-Gly-Arg-AMC acetate hydrolysis, with a K i value of 12.23 µM. Furthermore, mass spectrometry-based chemoproteomic assays and molecular docking simulations revealed that licochalcone A could bind to human thrombin at both exosite I and the catalytic site. In summary, our findings demonstrated that the chalcones isolated from licorice were a new class of direct thrombin inhibitors, also suggesting that licochalcone A was a promising lead compound for developing novel anti-thrombotic agents.

11.
Front Pharmacol ; 11: 628314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33628187

RESUMEN

UDP-glucuronosyltransferase 1A1 (UGT1A1) is an essential enzyme in mammals that is responsible for detoxification and metabolic clearance of the endogenous toxin bilirubin and a variety of xenobiotics, including some crucial therapeutic drugs. Discovery of potent and safe UGT1A1 inducers will provide an alternative therapy for ameliorating hyperbilirubinaemia and drug-induced hepatoxicity. This study aims to find efficacious UGT1A1 inducer(s) from natural flavonoids, and to reveal the mechanism involved in up-regulating of this key conjugative enzyme by the flavonoid(s) with strong UGT1A1 induction activity. Among all the tested flavonoids, neobavaisoflavone (NBIF) displayed the most potent UGT1A1 induction activity, while its inductive effects were confirmed by both western blot and glucuronidation activity assays. A panel of nuclear receptor reporter assays demonstrated that NBIF activated PPARα and PPARγ in a dose-dependent manner. Meanwhile, we also found that NBIF could up-regulate the expression of PPARα and PPARγ in hepatic cells, suggesting that the induction of UGT1A1 by NBIF was mainly mediated by PPARs. In silico simulations showed that NBIF could stably bind on pocket II of PPARα and PPARγ. Collectively, our results demonstrated that NBIF is a natural inducer of UGT1A1, while this agent induced UGT1A1 mainly via activating and up-regulating PPARα and PPARγ. These findings suggested that NBIF can be used as a promising lead compound for the development of more efficacious UGT1A1 inducers to treat hyperbilirubinaemia and UGT1A1-associated drug toxicities.

12.
Chin J Nat Med ; 17(11): 858-870, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31831132

RESUMEN

Psoraleae Fructus (the dried fruits of Psoralea corylifolia), one of the most frequently used Chinese herbs in Asian countries, has a variety of biological activities. In clinical settings, Psoraleae Fructus or Psoraleae Fructus-related herbal medicines frequently have been used in combination with a number of therapeutic drugs for the treatment of various human diseases, such as leukoderma, rheumatism and dysentery. The use of Psoraleae Fructus in combination with drugs has aroused concern of the potential risks of herb-drug interactions (HDI) or herb-endobiotic interactions (HEI). This article reviews the interactions between human drug-metabolizing enzymes and the constituents of Psoraleae Fructus; the major constituents in Psoraleae Fructus, along with their chemical structures and metabolic pathways are summarized, and the inhibitory and inductive effects of the constituents in Psoraleae Fructus on human drug-metabolizing enzymes (DMEs), including target enzyme(s), its modulatory potency, and mechanisms of action are presented. Collectively, this review summarizes current knowledge of the interactions between the Chinese herb Psoraleae Fructus and therapeutic drugs in an effort to facilitate its rational use in clinical settings, and especially to avoid the potential risks of HDI or HEI through human DMEs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Glucuronosiltransferasa/metabolismo , Interacciones de Hierba-Droga , Psoralea/química , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas en Tándem
13.
Fitoterapia ; 137: 104199, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31175950

RESUMEN

Human carboxylesterase 1 (CES1), primarily expressed in the liver and adipocytes, is responsible for the hydrolysis of endogenous esters (such as cholesteryl esters and triacylglycerols) and the metabolism of xenobiotic esters (such as clopidogrel and oseltamivir), thus participates in physiological and pathological processes. In this study, a series of natural pentacyclic triterpenoids were collected and their inhibitory effects against CES1 and CES2 were assayed using D-luciferin methyl ester (DME) and N-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinolin- 6-yl)- 2-chloroacetamide (NCEN) as specific optical substrate for CES1, and CES2, respectively. To this end, betulinic acid (BA) was found with strong inhibitory effect on CES1 (IC50, 15 nM) and relative high selectivity over CES2 (>2400-fold). Primary structure-activity relationships (SAR) analysis and docking simulations revealed that the carboxyl group at the C-28 site of BA is very essential for CES1 inhibition. The inhibition kinetic analyses demonstrated that BA was a potent competitive inhibitor against CES1-mediated DME hydrolysis. Further investigation on the inhibitory effect of BA in living cells (HepG2) based assays demonstrated that BA displayed potent inhibitory effects on intracellular CES1 activities, with the low IC50 value of 1.30 µM. These results demonstrated that BA is potent and highly selective CES1 inhibitor, which might be used as the promising tool for exploring the biological functions of CES1 in complex biological systems.


Asunto(s)
Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Triterpenos/farmacología , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA