Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Angew Chem Int Ed Engl ; : e202416039, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301679

RESUMEN

Hydrogen represents a clean and sustainable energy source with wide applications in fuel cells and hydrogen energy storage systems. Photocatalytic strategies emerge as a green and promising solution for hydrogen production, which still reveals several critical challenges in enhancing the efficiency and stability and improving the whole value. This review systematically elaborates on various coupling approaches for photocatalytic hydrogen production, aiming to improve both efficiency and value through different oxidation half-reactions. Firstly, the fundamental mechanism is discussed for photocatalytic hydrogen production. Then, the advances, challenges, and opportunities are expanded for the coupling of photocatalytic hydrogen production, which focuses on the integration of value-added reactions including O2 production, H2O2 production, biomass conversion, alcohol oxidation, and pollutants treatment. Finally, the challenges and outlook of photocatalytic H2 production technology are analyzed from the aspects of coupling hydrogen production value, photocatalyst design and reaction system construction. This work presents a holistic view of the field, emphasizing the synergistic benefits of coupled reactions and their practical application potential, rather than focusing on catalysts or single reaction systems. This review provides valuable references for the development and application of photocatalytic hydrogen production in energy conversion and environmental conservation through sustainable, eco-friendly and economic pathways.

2.
Angew Chem Int Ed Engl ; : e202412785, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105415

RESUMEN

Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C-C coupling to unravel their structure-performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu-Cu dual sites with different site distance coordinated by halogen at the first-shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long-range Cu-Cu (Cu-I-Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long-range Cu-Cu dual sites are accelerated to C2H4 generation and short-range Cu-Cu (Cu-Cl-Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long-range Cu-Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C-C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site-distance-dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu-Cu dual sites.

3.
Small ; : e2404822, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096107

RESUMEN

Selective photocatalytic CO2 reduction to high-value hydrocarbons using graphitic carbon nitride (g-C3N4) polymer holds great practical significance. Herein, the cyano-functionalized g-C3N4 (CN-g-C3N4) with a high local electron density site is successfully constructed for selective CO2 photoreduction to CH4 and C2H4. Wherein the potent electron-withdrawing cyano group induces a giant internal electric field in CN-g-C3N4, significantly boosting the directional migration of photogenerated electrons and concentrating them nearby. Thereby, a high local electron density site around its cyano group is created. Moreover, this structure can also effectively promote the adsorption and activation of CO2 while firmly anchoring *CO intermediates, facilitating their subsequent hydrogenation and coupling reactions. Consequently, using H2O as a reducing agent, CN-g-C3N4 achieves efficient and selective photocatalytic CO2 reduction to CH4 and C2H4 activity, with maximum rates of 6.64 and 1.35 µmol g-1 h-1, respectively, 69.3 and 53.8 times higher than bulk g-C3N4 and g-C3N4 nanosheets. In short, this work illustrates the importance of constructing a reduction site with high local electron density for efficient and selective CO2 photoreduction to hydrocarbons.

4.
J Colloid Interface Sci ; 675: 926-934, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39002242

RESUMEN

Mixed-dimensional van der Waals heterojunctions (MD-vdWhs), known for exceptional electron transfer and charge separation capabilities, remain underexplored in photocatalysis. In this study, we leveraged the synergistic effect of intermolecular π â†’ π* and D-π-A dual channels to fabricate novel MD-vdWhs. Owing to the synergistic effect, it exhibits superior electron transfer and delocalization ability, thereby enhancing its photocatalytic performance. The Optimal photocatalyst can degrade 98.78 % of 20 mg/L tetracycline (TC) within 15 min. Additionally, we introduced a novel proof strategy for investigating the photoelectron transfer path, creatively demonstrating the synergistic dual channels effect, which can be attributed to the carbonyl density and light-excitation degree. Notably, even under low-power light sources, it achieved complete inactivation of Escherichia coli within just 7 mins, far surpassing current cutting-edge research. This theoretical framework holds promise for broader applications within related studies.

5.
Nat Commun ; 15(1): 5316, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909037

RESUMEN

Circumventing the conventional two-electron oxygen reduction pathway remains a great problem in enhancing the efficiency of H2O2 photosynthesis. A promising approach to achieve outstanding photocatalytic activity involves the utilization of redox intermediates. Here, we engineer a polyimide aerogel photocatalyst with photoreductive carbonyl groups for non-sacrificial H2O2 production. Under photoexcitation, carbonyl groups on the photocatalyst surface are reduced, forming an anion radical intermediate. The produced intermediate is oxidized by O2 to produce H2O2 and subsequently restores the carbonyl group. The high catalytic efficiency is ascribed to a photocatalytic redox cycle mediated by the radical anion, which not only promotes oxygen adsorption but also lowers the energy barrier of O2 reduction reaction for H2O2 generation. An apparent quantum yield of 14.28% at 420 ± 10 nm with a solar-to-chemical conversion efficiency of 0.92% is achieved. Moreover, we demonstrate that a mere 0.5 m2 self-supported polyimide aerogel exposed to natural sunlight for 6 h yields significant H2O2 production of 34.3 mmol m-2.

6.
Small ; : e2402823, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712472

RESUMEN

Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.

7.
Angew Chem Int Ed Engl ; 63(26): e202405962, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644535

RESUMEN

Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst SA-DADK-H+ was developed. The unsymmetric protonation breaks the initial structural symmetry of DADK, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within SA-DADK-H+. The protonation process also creates numerous active sites for H2O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, SA-DADK-H+ exhibits an outstanding hydrogen evolution rate of 278.2 mmol g-1 h-1 and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the state-of-the-art performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.

8.
Small ; 20(32): e2400615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38477702

RESUMEN

Despite the intriguing potential, nano-socketed Cu/perovskite heterostructures for CO2 electroreduction (CO2RR) are still in their infancy and rational optimization of their CO2RR properties is lacking. Here, an effective strategy is reported to promote CO2-to-C2+ conversion over nano-socketed Cu/perovskite heterostructures by A-site-valence-controlled oxygen vacancies. For the proof-of-concept catalysts of Cu/La0.3-xSr0.6+xTiO3-δ (x from 0 to 0.3), their oxygen vacancy concentrations increase controllably with the decreased A-site valences (or the increased x values). In flow cells, their activity and selectivity for C2+ present positive correlations with the oxygen vacancy concentrations. Among them, the Cu/Sr0.9TiO3-δ with most oxygen vacancies shows the optimal activity and selectivity for C2+. And relative to the Cu/La0.3Sr0.6TiO3-δ with minimum oxygen vacancies, the Cu/Sr0.9TiO3-δ exhibits marked improvements (up to 2.4 folds) in activity and selectivity for C2+. The experiments and theoretical calculations suggest that the optimized performance can be attributed to the merits provided by oxygen vacancies, including the accelerated charge transfer, enhanced adsorption/activation of reaction species, and reduced energy barrier for C─C coupling. Moreover, when explored in a membrane-electrode assembly electrolyzer, the Cu/Sr0.9TiO3-δ catalyst shows excellent activity, selectivity (43.9%), and stability for C2H4 at industrial current densities, being the most effective perovskite-based catalyst for CO2-to-C2H4 conversion.

9.
Small ; 20(32): e2400344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38497503

RESUMEN

Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h-1, respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H2 and O2 evolution rates of 3.2 and 1.6 µmol h-1. Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.

10.
Angew Chem Int Ed Engl ; 63(19): e202319027, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38488819

RESUMEN

Heterocycle-linked phthalocyanine-based COFs with close-packed π-π conjugated structures are a kind of material with intrinsic electrical conductivity, and they are considered to be candidates for photoelectrical devices. Previous studies have revealed their applications for energy storage, gas sensors, and field-effect transistors. However, their potential application in photodetector is still not fully studied. The main difficulty is preparing high-quality films. In our study, we found that our newly designed benzimidazole-linked Cu (II)-phthalocyanine-based COFs (BICuPc-COFs) film can hardly formed with a regular aerobic oxidation method. Therefore, we developed a transfer dehydrogenation method with N-benzylideneaniline (BA) as a mild reagent. With this in hand, we successfully prepared a family of high crystalline BICuPc-COFs powders and films. Furthermore, both of these new BICuPc-COFs films showed high electrical conductivity (0.022-0.218 S/m), higher than most of the reported COFs materials. Due to the broad absorption and high conductivity of BICuPc-COFs, synaptic devices with small source-drain voltage (VDS=1 V) were fabricated with response light from visible to near-infrared. Based on these findings, we expect this study will provide a new perspective for the application of conducting heterocycle-linked COFs in synaptic devices.

11.
Small ; 20(29): e2311041, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342590

RESUMEN

The directional conversion of methane to ethylene is challenging due to the dissociation of the C─H bond and the self-coupling of methyl intermediates. Herein, a novel W/WO3- x catalyst with the fork vein structure consisting of an alternating arrangement of WO3- x and W is developed. Impressively, the catalyst achieves an unprecedented C2H4 yield of 1822.73 µmol g-1 h-1, with a selectivity of 82.49%. The enhanced catalytic activity is ascribed to the multifunctional synergistic effect induced by oxygen vacancies and W sites in W/WO3- x. Oxygen vacancies provide abundant coordination of unsaturation sites, which promotes the adsorption and activation of CH4, thus reducing the dissociation energy barrier of the C─H bond. The CH2 coupling barrier on the metal W surface is significantly lower compared to WO3, so CH2 can migrate to the W site for coupling. Importantly, the W/WO3- x with high periodicity provides multiple ordered local microelectric fields, and CH2 intermediates with dipole moments undergo orientation polarization and displacement polarization driven by the electric field, thus enabling CH2 migration. This work opens a new avenue for the structural design and modulation of photocatalysts, and provides new perspectives on the migration of methylene between multiple active sites.

12.
Nat Commun ; 15(1): 1565, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378629

RESUMEN

Cu-oxide-based catalysts are promising for CO2 electroreduction (CO2RR) to CH4, but suffer from inevitable reduction (to metallic Cu) and uncontrollable structural collapse. Here we report Cu-based rock-salt-ordered double perovskite oxides with superexchange-stabilized long-distance Cu sites for efficient and stable CO2-to-CH4 conversion. For the proof-of-concept catalyst of Sr2CuWO6, its corner-linked CuO6 and WO6 octahedral motifs alternate in all three crystallographic dimensions, creating sufficiently long Cu-Cu distances (at least 5.4 Å) and introducing marked superexchange interaction mainly manifested by O-anion-mediated electron transfer (from Cu to W sites). In CO2RR, the Sr2CuWO6 exhibits significant improvements (up to 14.1 folds) in activity and selectivity for CH4, together with well boosted stability, relative to a physical-mixture counterpart of CuO/WO3. Moreover, the Sr2CuWO6 is the most effective Cu-based-perovskite catalyst for CO2 methanation, achieving a remarkable selectivity of 73.1% at 400 mA cm-2 for CH4. Our experiments and theoretical calculations highlight the long Cu-Cu distances promoting *CO hydrogenation and the superexchange interaction stabilizing Cu sites as responsible for the superb performance.

13.
ACS Nano ; 18(9): 7074-7083, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386076

RESUMEN

Utilizing visible light for water disinfection is a more convenient, safe, and practical alternative to ultraviolet-light sterilization. Herein, we developed silver (Ag) single-atom anchored g-C3N4 (P-CN) nanosheets (Ag1/CN) and then utilized a spin-coating method to fabricate the Ag1/CN-based-membrane for effective antibacterial performance in natural water and domestic wastewater. The incorporated Ag single atom formed a Ag1-N6 motif, which increased the charge density around the N atoms, resulting in a built-in electric field ∼17.2 times stronger than that of pure P-CN and optimizing the dynamics of reactive oxygen species (ROS) production. Additionally, the Ag1-N6 motif inhibited the release of Ag ions, ensuring good biocompatibility. Based on the first-principles calculation, the adsorption energy of O2 on the Ag1/CN (-0.32 eV) was lower than that of P-CN (-0.07 eV), indicating that loaded Ag single atom can lower the energy barrier for O2 activation, generating extra *OH radicals that cooperated with *O2- to effectively neutralize bacteria. As a result, the Ag1/CN powder-catalyst with the concentration of 30 ppm demonstrated a 99.9% antibacterial efficiency against drug-resistant bacteria (Escherichia coli, Staphylococcus aureus, kanamycin-resistant Escherichia coli, and methicillin-resistant Staphylococcus aureus) under visible-light irradiation for 4 h. This efficacy was 24.8 times higher than that of the P-CN powder catalyst. Moreover, the Ag1/CN-based-membrane can maintain a 99.9% bactericidal efficiency for natural water and domestic wastewater treatment using a homemade flow device, demonstrating its potential for water disinfection. Notably, the visible-light-driven antibacterial efficiency of the Ag1/CN catalyst outperformed the majority of the reported g-C3N4-based catalysts/membranes.


Asunto(s)
Grafito , Staphylococcus aureus Resistente a Meticilina , Polvos/farmacología , Grafito/farmacología , Antibacterianos/farmacología , Luz , Agua , Escherichia coli , Catálisis
14.
Nat Commun ; 15(1): 428, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200002

RESUMEN

Rapid mass transfer in solid-solid reactions is crucial for catalysis. Although phoretic nanoparticles offer potential for increased collision efficiency between solids, their implementation is hindered by limited interaction ranges. Here, we present a self-driven long-range electrophoresis of organic nanocrystals facilitated by a rationally designed photogenerated outer electric field (OEF) on their surface. Employing perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecular nanocrystals as a model, we demonstrate that a directional OEF with an intensity of 13.6-0.4 kV m-1 across a range of 25-200 µm. This OEF-driven targeted electrophoresis of PTCDA nanocrystals onto the microplastic surface enhances the activity for subsequent decomposition of microplastics (196.8 mg h-1) into CO2 by solid-solid catalysis. As supported by operando characterizations and theoretical calculations, the OEF surrounds PTCDA nanocrystals initially, directing from the electron-rich (0 1 1) to the hole-rich [Formula: see text] surface. Upon surface charge modulation, the direction of OEF changes toward the solid substrate. The OEF-driven electrophoretic effect in organic nanocrystals with anisotropic charge enrichment characteristics indicates potential advancements in realizing effective solid-solid photocatalysis.

15.
Water Res ; 251: 121119, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219690

RESUMEN

The rising debate on the dilemma of photocatalytic water treatment technologies has driven researchers to revisit its prospects in water decontamination. Nowadays, heterogeneous photocatalysis coupled oxidant activation techniques are intensively studied due to their dual advantages of high mineralization and high oxidation efficiency in pollutant degradation. This paved a new way for the development of solar-driven oxidation technologies. Previous reviews focused on the advances in one specific coupling technique, such as photocatalytic persulfate activation and photocatalytic ozonation, but lack a consolidated understanding of the synergy between photocatalytic oxidation and oxidant activation. The synergy involves the migration of photogenerated carriers, radical reaction, and the increase in oxidation rate and mineralization. This review systematically summarizes the fundamentals of activation mechanism, advanced characterization techniques and synergistic effects of coupling techniques for water decontamination. Besides, specific cases that lead researchers astray in revealing mechanisms and assessing synergy are critically discussed. Finally, the prospects and challenges are put forward to further deepen the research on heterogeneous photocatalytic activation of oxidants. This work provides a consolidated view of the existing heterogeneous photocatalysis coupled oxidant activation techniques and inspires researchers to develop more promising solar-driven technologies for water decontamination.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Oxidantes , Descontaminación , Contaminantes Químicos del Agua/análisis , Catálisis , Oxidación-Reducción , Purificación del Agua/métodos
16.
Angew Chem Int Ed Engl ; 63(5): e202308597, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38081137

RESUMEN

The co-assembly naphthalimide/perylene diimide (NDINH/PDINH) supramolecular photocatalysts were successfully synthesized via a rapid solution dispersion method. A giant internal electric field (IEF) in co-assembly structure was built by the larger local dipole. NDINH coated on PDINH could reduce the reflected electric field over PDINH to improve its responsive activity to ultraviolet light. Resultantly, an efficient full-spectrum photocatalytic overall water splitting activity with H2 and O2 evolution rate of 317.2 and 154.8 µmol g-1 h-1 for NDINH/PDINH together with optimized O2 evolution rate with 2.61 mmol g-1 h-1 using AgNO3 as a sacrificial reagent were achieved. Meanwhile, its solar-to-hydrogen efficiency was enhanced to 0.13 %. The enhanced photocatalytic activity was primarily attributed to the IEF between NDINH and PDINH, significantly accelerating transfer and separation of photogenerated carriers. Additionally, a direct Z-Scheme pathway of carriers contributed to a high redox potential. The strategy provided a new perspective for the design of supramolecular photocatalysts.

17.
Small ; 20(24): e2310317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155499

RESUMEN

Metal-free carbon-based materials are one of the most promising electrocatalysts toward 2-electron oxygen reduction reaction (2e-ORR) for on-site production of hydrogen peroxide (H2O2), which however suffer from uncontrollable carbonizations and inferior 2e-ORR selectivity. To this end, a polydopamine (PDA)-modified carbon catalyst with a dipole-dipole enhancement is developed via a calcination-free method. The H2O2 yield rate outstandingly reaches 1.8 mol gcat -1 h-1 with high faradaic efficiency of above 95% under a wide potential range of 0.4-0.7 VRHE, overwhelming most of carbon electrocatalysts. Meanwhile, within a lab-made flow cell, the synthesized ORR electrode features an exceptional stability for over 250 h, achieved a pure H2O2 production efficacy of 306 g kWh-1. By virtue of its industrial-level capabilities, the established flow cell manages to perform a rapid pulp bleaching within 30 min. The superior performance and enhanced selectivity of 2e-ORR is experimentally revealed and attributed to the electronic reconfiguration on defective carbon sites induced by non-covalent dipole-dipole influence between PDA and carbon, thereby prohibiting the cleavage of O-O in OOH intermediates. This proposed strategy of dipole-dipole effects is universally applicable over 1D carbon nanotubes and 2D graphene, providing a practical route to design 2e-ORR catalysts.

18.
Angew Chem Int Ed Engl ; 62(48): e202313787, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843427

RESUMEN

Development of highly efficient and metal-free photocatalysts for bacterial inactivation under natural light is a major challenge in photocatalytic antibiosis. Herein, we developed an acidizing solvent-thermal approach for inserting a non-conjugated ethylenediamine segment into the conjugated planes of 3,4,9,10-perylene tetracarboxylic anhydride to generate a photocatalyst containing segregated π-conjugation units (EDA-PTCDA). Under natural light, EDA-PTCDA achieved 99.9 % inactivation of Escherichia coli and Staphylococcus aureus (60 and 45 min), which is the highest efficiency among all the natural light antibacterial reports. The difference in the surface potential and excited charge density corroborated the possibility of a built-in electron-trap effect of the non-conjugated segments of EDA-PTCDA, thus forming a highly active EDA-PTDA/bacteria interface. In addition, EDA-PTCDA exhibited negligible toxicity and damage to normal tissue cells. This catalyst provides a new opportunity for photocatalytic antibiosis under natural light conditions.


Asunto(s)
Electrones , Luz , Staphylococcus aureus , Catálisis
20.
Nano Lett ; 23(17): 8194-8202, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37624651

RESUMEN

Optimizing the interatomic distance of dual sites to realize C-C bond breaking of ethanol is critical for the commercialization of direct ethanol fuel cells. Herein, the concept of holding long-range dual sites is proposed to weaken the reaction barrier of C-C cleavage during the ethanol oxidation reaction (EOR). The obtained long-range Rh-O-Pt dual sites achieve a high current density of 7.43 mA/cm2 toward EOR, which is 13.3 times that of Pt/C, as well as remarkable stability. Electrochemical in situ Fourier transform infrared spectroscopy indicates that long-range Rh-O-Pt dual sites can increase the selectivity of C1 products and suppress the generation of a CO intermediate. Theoretical calculations further disclose that redistribution of the surface-localized electron around Rh-O-Pt can promote direct oxidation of -OH, accelerating C-C bond cleavage. This work provides a promising strategy for designing oxygen-bridged long-range dual sites to tune the activity and selectivity of complicated catalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA