RESUMEN
The tarnished plant bug, (TPB) Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae) is a key pest of cotton in the midsouth region and some areas of the eastern United States. Its control methods have been solely based on chemical insecticides which has contributed to insecticidal resistance and shortened residual periods for control of this insect pest. This study was conducted over a two-year period and examined the efficacy and residual effect of four commercial insecticides including lambda-cyhalothrin (pyrethroid), acephate (organophosphate), imidacloprid (neonicotinoid), and sulfoxaflor (sulfoxamine). The effectiveness and residual effects of these insecticides were determined by application on cotton field plots on four different dates during each season using three different concentrations (high: highest labeled commercial dose (CD), medium: 1/10 of the CD, low: 1/100 of the CD) on field cotton plots. Four groups of cotton leaves were randomly pulled from each treated plot and control 0-, 2-, 4-, 7-, and 9-days post treatment (DPT) and exposed to a lab colony of TPB adults. One extra leaf sample/ plot/ spray /DPT interval (0-2-4-7-9-11) during 2016 was randomly collected from the high concentration plots and sent to Mississippi State Chemical Laboratory for residual analysis. Mortality of TPB adults was greatest for those placed on leaves sprayed with the organophosphate insecticide with mortalities (%) of 81.7±23.4 and 63.3±28.8 (SE) 1-day after exposure (DAE) on leaves 0-DPT with the high concentration for 2016 and 2017, respectively, reaching 94.5±9.5 and 95.4±7.6 6-DAE each year. Mortality to all insecticides continued until 9 and 4-DPT for high and medium concentrations, respectively. However, organophosphate (39.4±28.6) and pyrethroid (24.4±9.9) exhibited higher mortality than sulfoxamine (10.6±6.6) and the neonicotinoid (4.0±1.5) 7-DAE on 9-DPT leaves with the high concentration. Based on our results using the current assay procedure, TPB adults were significantly more susceptible to contact than systemic insecticides and due to its residual effect, organophosphate could kill over 80% of the TPB population 7-DPT.
Asunto(s)
Gossypium , Insecticidas , Neonicotinoides , Nitrilos , Nitrocompuestos , Fosforamidas , Piretrinas , Insecticidas/farmacología , Gossypium/parasitología , Animales , Piretrinas/farmacología , Neonicotinoides/farmacología , Mississippi , Nitrilos/farmacología , Nitrocompuestos/farmacología , Control de Insectos/métodos , Heterópteros/efectos de los fármacos , Imidazoles/farmacología , Hemípteros/efectos de los fármacos , Compuestos Organotiofosforados , Piridinas , Compuestos de AzufreRESUMEN
Simulation of surface processes is a key part of computational chemistry that offers atomic-scale insights into mechanisms of heterogeneous catalysis, diffusion dynamics, and quantum tunneling phenomena. The most common theoretical approaches involve optimization of reaction pathways, including semiclassical tunneling pathways (called instantons). The computational effort can be demanding, especially for instanton optimizations with an ab initio electronic structure. Recently, machine learning has been applied to accelerate reaction-pathway optimization, showing great potential for a wide range of applications. However, previous methods still suffer from numerical and efficiency issues and were not designed for condensed-phase reactions. We propose an improved framework based on Gaussian process regression for general transformed coordinates, which has improved efficiency and numerical stability, and we propose a descriptor that combines internal and Cartesian coordinates suitable for modeling surface processes. We demonstrate with 11 instanton optimizations in three representative systems that the improved approach makes ab initio instanton optimization significantly cheaper, such that it becomes not much more expensive than a classical transition-state theory rate calculation.
RESUMEN
In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildinii ≤ C. hilaris ≈ N. viridula, while in 2023, it was ranked as P. guildinii ≤ C. hilaris ≤ E. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean.
RESUMEN
The tarnished plant bug (TPB, Lygus lineolaris) remains a major pest for a variety of crops. Frequent sprays on row crops, especially cotton, prompted resistance development in field populations. To maintain chemical control as an effective tool against the pest, knowledge of global gene regulations is desirable for better understanding and managing the resistance. Novel microarray expressions of 6688 genes showed 685 significantly upregulated and 1382 significantly downregulated genes in oxamyl-selected TPBs (Vyd1515FF[R]) from a cotton field. Among the 685 upregulated genes (participated in 470 pathways), 176 genes code 30 different enzymes, and 7 of the 30 participate in 24 metabolic pathways. Six important detoxification pathways were controlled by 20 genes, coding 11 esterases, two P450s, two oxidases, and three pathway-associated enzymes (synthases, reductase, and dehydrogenase). Functional analyses showed substantially enhanced biological processes and molecular functions, with hydrolase activity as the most upregulated molecular function (controlled by 166 genes). Eleven esterases belong to the acting on ester bond subclass of the 166 hydrolases. Surprisingly, only one GST showed significant upregulation, but it was not involved in any detoxification pathway. Therefore, this research reports a set of 20 genes coding 6 enzyme classes to detoxify a carbamate insecticide oxamyl in Vyd1515FF. Together with three previous reports, we have obtained the best knowledge of resistance mechanisms to all four conventional insecticide classes in the economically important crop pest. This valuable finding will greatly facilitate the development of molecular tools to monitor and manage the resistance and to minimize risk to environment.
RESUMEN
The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal structures match. We devised a theoretical framework to describe and classify crystal-structure matches (CSM). Such description fully exploits the translational and rotational symmetries and is independent of the choice of supercells. This is enabled by the use of the Hermite normal form, an analog of reduced echelon form for integer matrices. With its help, exhausting all CSMs is made possible, which goes beyond the conventional optimization schemes. In an example study of the martensitic transformation of steel, our enumeration algorithm finds many candidate CSMs with lower strains than known mechanisms. Two long-sought CSMs accounting for the most commonly observed Kurdjumov-Sachs orientation relationship and the Nishiyama-Wassermann orientation relationship are unveiled. Given the comprehensiveness and efficiency, our enumeration scheme provide a promising strategy for solid-solid phase transition mechanism research.
RESUMEN
Purpose: In this study, our objective was to investigate the potential utility of lymphocyte-C-reactive protein ratio (LCR) as a predictor of disease progression and a screening tool for intensive care unit (ICU) admission in adult patients with acute pancreatitis (AP). Methods: We included a total of 217 adult patients with AP who were admitted to the First Affiliated Hospital of Harbin Medical University between July 2019 and June 2022. These patients were categorized into three groups: mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP), based on the presence and duration of organ dysfunction. Various demographic and clinical data were collected and compared among different disease severity groups. Results: Height, diabetes, lymphocyte count (LYMPH), lymphocyte percentage (LYM%), platelet count (PLT), D-Dimer, albumin (ALB), blood urea nitrogen (BUN), serum creatinine (SCr), glucose (GLU), calcium ion (Ca2+), C-reactive protein (CRP), procalcitonin (PCT), hospitalization duration, ICU admission, need for BP, LCR, sequential organ failure assessment (SOFA) score, bedside index for severity in AP (BISAP) score, and modified Marshall score showed significant differences across different disease severity groups upon hospitalization. Notably, there were significant differences in LCR between the MAP group and the MSAP and SAP combined group, and the MAP and MSAP combined group and the SAP group, and adult AP patients with ICU admission and those without ICU admission upon hospitalization. Conclusion: In summary, LCR upon hospitalization can be utilized as a simple and reliable predictor of disease progression and a screening tool for ICU admission in adult patients with AP.
RESUMEN
Background: Initial choices of antimicrobial therapy for most cases of community-acquired pneumonia (CAP) in children under 5 years of age are typically based on local epidemiology, risk factors assessment, and subsequent clinical parameters and positive cultures, which can lead to the underdiagnosis and underestimation of lung infections caused by uncommon pathogens. Contezolid, an orally administered oxazolidinone antibiotic, gained approval from the National Medical Products Administration (NMPA) of China in June 2021 for managing complicated skin and soft tissue infections (cSSTI) caused by staphylococcus aureus (SA), streptococcus pyogenes, or streptococcus agalactis. Owing to its enhanced safety profile and ongoing clinical progress, the scope of contezolid's clinical application continues to expand, benefiting a growing number of patients with Gram-positive bacterial infections. Case summary: In this report, we present the first use of contezolid in a toddler with severe CAP caused by SA, aiming to avoid potential adverse drug reactions (ADRs) associated with vancomycin and linezolid. Conclusion: Although contezolid has not been officially indicated for CAP, it has been shown to be effective and safe in the management of SA-induced severe CAP in this toddler, suggesting its potential as an alternative option in the dilemma, especially for patients who are susceptible or intolerant to ADRs associated with first-line anti-methicillin-resistant staphylococcus aureus (MRSA) antimicrobial agents.
RESUMEN
Ochratoxin A (OTA) is a mycotoxin, and triadimefon (TDF) is a triazole fungicide. These compounds are prevalent in the environment, and their residues have been detected in crops. However, the precise health risks associated with mycotoxins and fungicides are not fully elucidated. In this work, five-week-old mice were gavage with OTA (0.3 and 1.5 mg/kg/day), TDF (10 and 50 mg/kg/day), and OTA + TDF (0.3 + 10 and 1.5 + 50 mg/kg/day) for 28 days. Exposure to OTA, TDF, and OTA + TDF led to significant alterations in liver total cholesterol (TC), triglyceride (TG), and glucose (GLU) levels, as well as in genes associated with glycolipid metabolism in mice. Reduced acylcarnitine levels in serum indicated that OTA, TDF, and co-exposure inhibited fatty acid (FA) ß-oxidation. Furthermore, OTA and TDF disrupted the integrality of the gut barrier function and altered the structure of the intestinal microbiota. These findings suggested that OTA, TDF, and their co-exposure might disrupt the intestinal barrier, alter the structure of the microbiota, and subsequently inhibit FA ß-oxidation, indicating the interference of OTA and TDF with glycolipid-related intestinal barrier dysfunction. Moreover, our data revealed a toxic additive effect between OTA and TDF, providing a foundation for assessing the combined toxicity risk of mycotoxins and fungicides.
Asunto(s)
Fungicidas Industriales , Micotoxinas , Ocratoxinas , Animales , Ratones , Fungicidas Industriales/toxicidad , Triazoles/toxicidad , GlucolípidosRESUMEN
Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades. This Perspective focuses on two path-integral based tunneling splitting methods whose computational cost scales well with the system size, namely, the ring-polymer instanton method and the path-integral molecular dynamics (PIMD) method. From a simple derivation, we show that the former is a semiclassical approximation to the latter, despite that the two methods are derived very differently. Currently, the PIMD method is considered to be an ideal route to rigorously compute the ground-state tunneling splitting, while the instanton method sacrifices some accuracy for a significantly smaller computational cost. An application scenario of such a quantitatively rigorous calculation is to test and calibrate the potential energy surfaces of molecular systems by spectroscopic accuracy. Recent progress in water clusters is reviewed, and the current challenges are discussed.
Asunto(s)
Teoría Cuántica , Agua , Simulación de Dinámica Molecular , Hidrógeno/química , PolímerosRESUMEN
BACKGROUND: Heavy selection pressure prompted the development of resistance in a serious cotton pest tarnished plant bug (TPB), Lygus Lineolaris in the mid-southern United States. Conversely, a laboratory resistant TPB strain lost its resistance to five pyrethroids and two neonicotinoids after 36 generations without exposure to any insecticide. It is worthwhile to examine why the resistance diminished in this population and determine whether the resistance fade away has practical value for insecticide resistance management in TPB populations. RESULTS: A field-collected resistant TPB population in July (Field-R1) exhibited 3.90-14.37-fold resistance to five pyrethroids and two neonicotinoids, while another field-collected TPB population in April (Field-R2) showed much lower levels of resistance (0.84-3.78-fold) due to the absence of selection pressure. Interestingly, after 36 generations without exposure to insecticide, the resistance levels in the same population [laboratory resistant strain (Lab-R)] significantly decreased to 0.80-2.09-fold. The use of detoxification enzyme inhibitors had synergistic effects on permethrin, bifenthrin and imidacloprid in resistant populations of Lygus lineolaris. The synergism was more pronounced in Field-R2 than laboratory susceptible (Lab-S) and Lab-R TPB population. Moreover, esterase, glutathione S-transferase (GST), and cytochrome P450-monooxygenases (P450) enzyme activities increased significantly by approximately 1.92-, 1.43-, and 1.44-fold in Field-R1, respectively, and 1.38-fold increased P450 enzyme activities in Field-R2 TPB population, compared to the Lab-S TPB. In contrast, the three enzyme activities in the Lab-R strain were not significantly elevated anymore relative to the Lab-S population. Additionally, Field-R1 TPB showed elevated expression levels of certain esterase, GST and P450 genes, respectively, while Field-R2 TPB overexpressed only P450 genes. The elevation of these gene expression levels in Lab-R expectedly diminished to levels close to those of the Lab-S TPB populations. CONCLUSION: Our results indicated that the major mechanism of resistance in TPB populations was metabolic detoxification, and the resistance development was likely conferred by increased gene expressions of esterase, GST, and P450 genes, the fadeaway of the resistance may be caused by reversing the overexpression of esterase, GST and P450. Without pesticide selection, resistant gene (esterase, GST, P450s) frequencies declined, and detoxification enzyme activities returned to Lab-S level, which resulted in the recovery of the susceptibility in the resistant TPB populations. Therefore, pest's self-purging of insecticide resistance becomes strategically desirable for managing resistance in pest populations. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Asunto(s)
Heterópteros , Insecticidas , Piretrinas , Animales , Insecticidas/farmacología , Piretrinas/farmacología , Heterópteros/genética , Neonicotinoides/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Esterasas/metabolismo , Resistencia a los Insecticidas/genéticaRESUMEN
Frequent sprays on cotton prompted resistance development in the tarnished plant bug (TPB). Knowledge of global gene regulation is highly desirable to better understand resistance mechanisms and develop molecular tools for monitoring and managing resistance. Novel microarray expressions of 6688 genes showed 3080 significantly up- or down-regulated genes in permethrin-treated TPBs. Among the 1543 up-regulated genes, 255 code for 39 different enzymes, and 15 of these participate in important pathways and metabolic detoxification. Oxidase is the most abundant and over-expressed enzyme. Others included dehydrogenases, synthases, reductases, and transferases. Pathway analysis revealed several oxidative phosphorylations associated with 37 oxidases and 23 reductases. One glutathione-S-transferase (GST LL_2285) participated in three pathways, including drug and xenobiotics metabolisms and pesticide detoxification. Therefore, a novel resistance mechanism of over-expressions of oxidases, along with a GST gene, was revealed in permethrin-treated TPB. Reductases, dehydrogenases, and others may also indirectly contribute to permethrin detoxification, while two common detoxification enzymes, P450 and esterase, played less role in the degradation of permethrin since none was associated with the detoxification pathway. Another potential novel finding from this study and our previous studies confirmed multiple/cross resistances in the same TPB population with a particular set of genes for different insecticide classes.
RESUMEN
We applied the harmonic inversion technique to extract vibrational eigenvalues from the semiclassical initial value representation (SC-IVR) propagator of molecular systems described by explicit potential surfaces. The cross-correlation filter-diagonalization (CCFD) method is used for the inversion problem instead of the Fourier transformation, which allows much shorter propagation time and is thus capable of avoiding numerical divergence issues while getting rid of approximations like the separable one to the pre-exponential factor. We also used the "Divide-and-Conquer" technique to control the total dimensions under consideration, which helps to further enhance the numerical behavior of SC-IVR calculations and the stability of harmonic inversion methods. The technique is tested on small molecules and water trimer to justify its applicability and reliability. Results show that the CCFD method can effectively extract the vibrational eigenvalues from short trajectories and reproduce the original spectra conventionally obtained from long-time ones, with no loss on accuracy while the numerical behavior is much better. This work demonstrates the possibility to apply the combined method of CCFD and SC-IVR to real molecular potential surfaces, which might be a new way to overcome the numerical instabilities caused by the increase of dimensions.
RESUMEN
Even though honey bees in the field are routinely exposed to a complex mixture of many different agrochemicals, few studies have surveyed toxic effects of pesticide mixtures on bees. To elucidate the interactive actions of pesticides on crop pollinators, we determined the individual and joint toxicities of thiamethoxam (THI) and other seven pesticides [dimethoate (DIM), methomyl (MET), zeta-cypermethrin (ZCY), cyfluthrin (CYF), permethrin (PER), esfenvalerate (ESF) and tetraconazole (TET)] to honey bees (Aplis mellifera) with feeding toxicity test. Results from the 7-days toxicity test implied that THI elicited the highest toxicity with a LC50 data of 0.25 (0.20-0.29) µg mL-1, followed by MET and DIM with LC50 data of 4.19 (3.58-4.88) and 5.30 (4.65-6.03) µg mL-1, respectively. By comparison, pyrethroids and TET possessed relatively low toxicities with their LC50 data from the range of 33.78 (29.12-38.39) to 1125 (922.4-1,442) µg mL-1. Among 98 evaluated THI-containing binary to octonary mixtures, 29.59% of combinations exhibited synergistic effects. In contrast, 18.37% of combinations exhibited antagonistic effects on A. mellifera. Moreover, 54.8% pesticide combinations incorporating THI and TET displayed synergistic toxicities to the insects. Our findings emphasized that the coexistence of several pesticides might induce enhanced toxicity to honey bees. Overall, our results afforded worthful toxicological information on the combined actions of neonicotinoids and current-use pesticides on honey bees, which could accelerate farther comprehend on the possible detriments of other pesticide mixtures in agro-environment.
Asunto(s)
Insecticidas , Plaguicidas , Abejas , Animales , Plaguicidas/toxicidad , Tiametoxam , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Pruebas de Toxicidad , Dimetoato , MetomilRESUMEN
The extensive use of pesticides has negative effects on the health of insect pollinators. Although pollinators in the field are seldom exposed to individual pesticides, few reports have assessed the toxic impacts of pesticide combinations on them. In this work, we purposed to reveal the combined impacts of tetrachlorantraniliprole (TET) and tebuconazole (TEB) on honey bees (Apis mellifera L.). Our data exhibited that TET had greater toxicity to A. mellifera (96-h LC50 value of 298.2 mg a.i. L-1) than TEB (96-h LC50 value of 1,841 mg a.i. L-1). The mixture of TET and TEB displayed acute synergistic toxicity to the pollinators. Meanwhile, the activities of CarE, CYP450, trypsin, and sucrase, as well as the expressions of five genes (ppo, abaecin, cat, CYP4G11, and CYP6AS14) associated with immune response, oxidative stress, and detoxification metabolism, were conspicuously altered when exposed to the mixture relative to the individual exposures. These results provided an overall comprehension of honey bees upon the challenge of sublethal toxicity between neonicotinoid insecticides and triazole fungicides and could be used to assess the intricate toxic mechanisms in honey bees when exposed to pesticide mixtures. Additionally, these results might guide pesticide regulation strategies to enhance the honey bee populations.
Asunto(s)
Fungicidas Industriales , Insecticidas , Plaguicidas , Abejas , Animales , Insecticidas/toxicidad , Triazoles/toxicidad , Fungicidas Industriales/toxicidad , NeonicotinoidesRESUMEN
Pesticide exposure remains one of the main factors in the population decline of insect pollinators. It is urgently necessary to assess the effects of mixtures on pollinator risk assessments because they are often exposed to numerous agrochemicals. In the present study, we explored the mixture toxic effects of thiacloprid (THI) and cyproconazole (CYP) on honey bees (Apis mellifera L.). Our findings revealed that THI possessed higher acute toxicity to A. mellifera (96-h LC50 value of 216.3 mg a.i. L-1) than CYP (96-h LC50 value of 601.4 mg a.i. L-1). It's worth noting that the mixture of THI and CYP exerted an acute synergistic effect on honey bees. At the same time, the activities of detoxification enzyme cytochrome P450s (CYP450s) and neuro target enzyme Acetylcholinesterase (AChE), as well as the expressions of seven genes (CRBXase, CYP306A1, CYP6AS14, apidaecin, defensing-2, vtg, and gp-93) associated with detoxification metabolism, immune response, development, and endoplasmic reticulum stress, were significantly altered in the combined treatment compared with the corresponding individual exposures of THI or CYP. These data indicated that a mixture of THI and CYP could disturb the physiological homeostasis of honey bees. Our study provides a theoretical basis for in-depth studies on the impacts of pesticide mixtures on the health of honey bees. Our study also provides important guidance for the rational application of pesticide mixtures to protect pollinators in agricultural production effectively.
Asunto(s)
Insecticidas , Plaguicidas , Abejas , Animales , Insecticidas/toxicidad , Acetilcolinesterasa , Plaguicidas/toxicidadRESUMEN
Insect pollinators are routinely exposed to a complex mixture of many pesticides. However, traditional environmental risk assessment is only carried out based on ecotoxicological data of single substances. In this context, we aimed to explore the potential effects when worker honey bees (Apis mellifera L.) were simultaneously challenged by thiamethoxam (TMX) and flusilazole (FSZ). Results displayed that TMX possessed higher toxicity to A. mellifera (96-h LC50 value of 0.11 mg a. i. L-1) than FSZ (96-h LC50 value of 738 mg a. i. L-1). Furthermore, the mixture of TMX and FSZ exhibited an acute synergistic impact on the pollinators. Meanwhile, the activities of SOD, caspase 3, caspase 9, and PPO, as well as the expressions of six genes (abaecin, dorsal-2, defensin-2, vtg, caspase-1, and CYP6AS14) associated with oxidative stress, immune response, lifespan, cell apoptosis, and detoxification metabolism were noteworthily varied in the individual and mixture challenges than at the baseline level. These data revealed that it is imminently essential to investigate the combined toxicity of pesticides since the toxicity evaluation from individual compounds toward honey bees may underestimate the toxicity in realistic conditions. Overall, the present results could help understand the potential contribution of pesticide mixtures to the decline of bee populations.
Asunto(s)
Insecticidas , Plaguicidas , Abejas , Animales , Tiametoxam/toxicidad , Insecticidas/toxicidad , Plaguicidas/toxicidad , Triazoles/toxicidad , Neonicotinoides/toxicidadRESUMEN
Using a full-dimensional quantum method for nuclei and a new first-principles water potential, we show that the torsional tunneling splitting in a water trimer can be reproduced with accuracy up to â¼1 cm-1. We quantify the coupling constants of the nuclear quantum states between nonadjacent wells and show that they are the main reason for shifting the quartet-split levels in spectra from a 1:2:1 spacing. This demonstrates the limitation of treatments using simplified models such as the Hückel model and emphasizes the nonlocal nature of the quantum interactions in this system. With such an ab initio endeavor, we examine the quality of the water potential developed and provide a rigorous scheme to decipher the experimental spectra with unprecedented accuracy, which is applicable to more general systems.
RESUMEN
BACKGROUND: Coronavirus disease 2019 (COVID-19) has been far more devastating than expected, showing no signs of slowing down at present. Heilongjiang Province is the most northeastern province of China, and has cold weather for nearly half a year and an annual temperature difference of more than 60ºC, which increases the underlying morbidity associated with pulmonary diseases, and thus leads to lung dysfunction. The demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province, China with such climatic characteristics are still not clearly illustrated. AIM: To illustrate the demographic features and laboratory parameters of COVID-19 deceased patients in Heilongjiang Province by comparing with those of surviving severe and critically ill cases. METHODS: COVID-19 deceased patients from different hospitals in Heilongjiang Province were included in this retrospective study and compared their characteristics with those of surviving severe and critically ill cases in the COVID-19 treatment center of the First Affiliated Hospital of Harbin Medical University. The surviving patients were divided into severe group and critically ill group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (the seventh edition). Demographic data were collected and recorded upon admission. Laboratory parameters were obtained from the medical records, and then compared among the groups. RESULTS: Twelve COVID-19 deceased patients, 27 severe cases and 26 critically ill cases were enrolled in this retrospective study. No differences in age, gender, and number of comorbidities between groups were found. Neutrophil percentage (NEUT%), platelet (PLT), C-reactive protein (CRP), creatine kinase isoenzyme (CK-MB), serum troponin I (TNI) and brain natriuretic peptides (BNP) showed significant differences among the groups (P = 0.020, P = 0.001, P < 0.001, P = 0.001, P < 0.001, P < 0.001, respectively). The increase of CRP, D-dimer and NEUT% levels, as well as the decrease of lymphocyte count (LYMPH) and PLT counts, showed significant correlation with death of COVID-19 patients (P = 0.023, P = 0.008, P = 0.045, P = 0.020, P = 0.015, respectively). CONCLUSION: Compared with surviving severe and critically ill cases, no special demographic features of COVID-19 deceased patients were observed, while some laboratory parameters including NEUT%, PLT, CRP, CK-MB, TNI and BNP showed significant differences. COVID-19 deceased patients had higher CRP, D-dimer and NEUT% levels and lower LYMPH and PLT counts.
RESUMEN
Isotope substitution is an important experimental technique that offers deep insight into reaction mechanisms, as the measured kinetic isotope effects (KIEs) can be directly compared with theory. For multiple proton transfer processes, there are two types of mechanisms: stepwise transfer and concerted transfer. The Bell-Limbach model provides a simple theory to determine whether the proton transfer mechanism is stepwise or concerted from KIEs. Recent scanning tunneling microscopy (STM) experiments have studied the proton switching process in water tetramers on NaCl(001). Theoretical studies predict that this process occurs via a concerted mechanism; however, the experimental KIEs resemble the Bell-Limbach model for stepwise tunneling, raising questions on the underlying mechanism or the validity of the model. We study this system using ab initio instanton theory, and in addition to thermal rates, we also considered microcanonical rates, as well as tunneling splittings. The instanton theory predicts a concerted mechanism, and the KIEs for tunneling rates (both thermal and microcanonical) upon deuteration are consistent with the Bell-Limbach model for concerted tunneling but could not explain the experiments. For tunneling splittings, partial and full deuteration change the size of it in a similar fashion to how they change the rates. We further examined the Bell-Limbach model in another system, porphycene, which has both stepwise and concerted tunneling pathways. The KIEs predicted by instanton theory are again consistent with the Bell-Limbach model. This study highlights differences between KIEs in stepwise and concerted tunneling and the discrepancy between theory and recent STM experiments. New theory/experiments are desired to settle this problem.
RESUMEN
Sepsis is the major culprit of death among critically ill patients who are hospitalized in intensive care units (ICUs). Although sepsis-related mortality is steadily declining year-by-year due to the continuous understanding of the pathophysiological mechanism on sepsis and improvement of the bundle treatment, sepsis-associated hospitalization is rising worldwide. Surviving Sepsis Campaign (SSC) guidelines are continuously updating, while their content is extremely complex and comprehensive for a precisely implementation in clinical practice. As a consequence, a standardized step-by-step approach for the diagnosis and treatment of sepsis is particularly important. In the present study, we proposed a standardized step-by-step approach for the diagnosis and treatment of sepsis using our daily clinical experience and the latest researches, which is close to clinical practice and is easy to implement. The proposed approach may assist clinicians to more effectively diagnose and treat septic patients and avoid the emergence of adverse clinical outcomes.