RESUMEN
In apples, a bottleneck effect in calcium (Ca) transport within fruit stalk has been observed. To elucidate that how auxin affects Ca forms and distribution in the apple fruit stalk, we investigated the effects of different concentrations of auxin treatment (0, 10, 20, and 30 mg·L-1) on Ca content, forms, distribution, and fruit quality during later stages of fruit expansion. The results showed that auxin treatment led to a dramatic reduction in total Ca content in stalk, while an approximately 30 % increase in fruit. Furthermore, auxin treatment effectively enhanced the functionality of xylem vessels in vascular bundles of the stalk in bagged apples. Finally, TOPSIS method was used to assess fruit quality, with treatments ranked as follows: IAA20 > NAA20 > IAA30 > IAA10 > CK > NPA. The findings lay a foundation for further studies on the bottleneck in Ca transport within stalk, uneven distribution of Ca in fruit, and provide insights into Ca utilization efficiency in bagged apples.
Asunto(s)
Calcio , Frutas , Ácidos Indolacéticos , Malus , Malus/química , Malus/metabolismo , Malus/efectos de los fármacos , Malus/crecimiento & desarrollo , Frutas/química , Frutas/metabolismo , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Calcio/metabolismo , Calcio/análisis , Tallos de la Planta/metabolismo , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte BiológicoRESUMEN
N and Ca are essential nutrients for apple growth and development. Studies have found that Ca content was not low under high N conditions but was poorly available. However, the underlying physiological mechanism through which N regulates Ca availability remains unclear. In this study, apple plants were supplied with N and Ca to analyse the content, in situ distribution, and forms of Ca using noninvasive micro-test technique, electron probe microanalysis, Fourier transform infrared spectroscopy, and transcriptome analysis. A potential interaction was observed between N and Ca in apple leaves. The application of high N and Ca concentration led to a CaOx content of 12.51 g/kg, representing 93.54% of the total Ca in the apple leaves. Electron probe microanalysis revealed that Ca deposited in the phloem primarily existed as CaOx rhombus-shaped crystals. Additionally, high N positively regulated oxalate accumulation in the leaves, increasing it by 40.79 times compared with low N concentration. Specifically, N induced oxalate synthesis in apple leaves by upregulating the MdICL, MdOXAC, and MdMDH genes, while simultaneously inhibiting degradation through downregulation of the MdAAE3 gene. Transcriptome and correlation analyses further confirmed oxaloacetate as the precursor for the synthesis of CaOx crystals in the apple leaves, which were produced via the 'photosynthesis/glycolysis -oxaloacetate -oxalate -CaOx' pathway. WGCNA identified potential regulators of the CaOx biosynthesis pathway triggered by N. Overall, the results provide insights into the regulation of Ca availability by N in apple leaves and support the development of Ca efficient cultivation technique.
RESUMEN
Plants encounter numerous adversities during growth, necessitating the identification of common stress activators to bolster their resistance. However, the current understanding of these activators' mechanisms remains limited. This study identified three anti-stress activators applicable to apple trees, all of which elevate plant proline content to enhance resistance against various adversities. The results showed that the application of these sugar substitutes increased apple proline content by two to three times compared to the untreated group. Even at a lower concentration, these activators triggered plant stress resistance without compromising apple fruit quality. Therefore, these three sugar substitutes can be exogenously sprayed on apple trees to augment proline content and fortify stress resistance. Given their effectiveness and low production cost, these activators possess significant application value. Since they have been widely used in the food industry, they hold potential for broader application in plants, fostering apple industry development.
Asunto(s)
Malus , Prolina , Estrés Fisiológico , Azúcares , Malus/metabolismo , Malus/fisiología , Prolina/metabolismo , Azúcares/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Potassium (K) and magnesium (Mg) play analogous roles in regulating plant photosynthesis and carbon and nitrogen (C-N) metabolism. Based on this consensus, we hypothesize that appropriate Mg supplementation may alleviate growth inhibition under low K stress. We monitored morphological, physiological, and molecular changes in G935 apple plants under different K (0.1 and 6 mmol L-1) and Mg supply (3 and 6 mmol L-1) conditions. Low K stress caused changes in root and leaf structure, inhibited photosynthesis, and limited the root growth of the apple rootstock. Further study on Mg supplementation showed that it could promote the uptake of K+ and NO3- by upregulating the expression of K+ transporter proteins such as Arabidopsis K+ transporter 1 (MdAKT1), high-affinity K+ transporter 1 (MdHKT1), and potassium transporter 5 (MdPT5) and nitrate transporters such as nitrate transporter 1.1/1.2/2.1/2.4 (MdNRT 1.1/1.2/2.1/2.4). Mg promoted the translocation of 15N from roots to leaves and enhanced photosynthetic N utilization efficiency (PNUE) by increasing the proportion of photosynthetic N and alleviating photosynthetic restrictions. Furthermore, Mg supplementation improved the synthesis of photosynthates by enhancing the activities of sugar-metabolizing enzymes (Rubisco, SS, SPS, S6PDH). Mg also facilitated the transport of sucrose and sorbitol from leaves to roots by upregulating the expression of sucrose transporter 1.1/1.2/4.1/4.2 (MdSUT 1.1/1.2/4.1/4.2) and sorbitol transporter 1.1/1.2 (MdSOT 1.1/1.2). Overall, Mg effectively alleviated growth inhibition in apple rootstock plants under low K stress by facilitating the uptake of N and K uptake, optimizing nitrogen partitioning, enhancing nitrogen use efficiency (NUE) and PNUE, and promoting the photosynthate synthesis and translocation.
Asunto(s)
Carbono , Magnesio , Malus , Nitrógeno , Fotosíntesis , Potasio , Malus/metabolismo , Malus/efectos de los fármacos , Malus/crecimiento & desarrollo , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Carbono/metabolismo , Magnesio/metabolismo , Potasio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacosRESUMEN
Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. However, the influence of N and K interaction on photosynthesis is still not fully understood. Using a hydroponics approach, we studied the effects of different N and K conditions on the physiological characteristics, N allocation and photosynthetic capacity of apple rootstock M9T337. The results showed that high N and low K conditions significantly reduced K content in roots and leaves, resulting in N/K imbalance, and allocated more N in leaves to non-photosynthetic N. Low K conditions increased biochemical limitation (BL), mesophyll limitation (MCL), and stomatal limitation (SL). By setting different N supplies, lowering N levels under low K conditions increased the proportion of water-soluble protein N (Nw) and sodium dodecyl sulfate-soluble proteins (Ns) by balancing N/K and increased the proportion of carboxylation N and electron transfer N. This increased the maximum carboxylation rate and mesophyll conductance, which reduced MCL and BL and alleviated the low K limitation of photosynthesis in apple rootstocks. In general, our results provide new insights into the regulation of photosynthetic capacity by N/K balance, which is conducive to the coordinated supply of N and K nutrients.
RESUMEN
Selenium (Se) can be absorbed by plants, thereby affects plant physiological activity, interferes gene expression, alters metabolite content and influences plant growth. However, the molecular mechanism underlying the plant response to Se remains unclear. In this study, apple plants were exposed to Se at concentrations of 0, 3, 6, 9, 12, 24, and 48 µM. Low concentrations of Se promoted plant growth, while high Se concentrations (≥24 µM) reduced photosynthesis, disturbed carbon and nitrogen metabolism, damaged the antioxidant system, and ultimately inhibited plant growth. The transcriptome and metabolome revealed that Se mainly affected three pathways, namely the 'biosynthesis of amino acids', 'starch and sucrose metabolism', and 'phenylpropanoid biosynthesis' pathways. 9 µM Se improved the synthesis, catabolism and utilization of amino acids and sugars, ultimately promoted plant growth. However, 24 µM Se up-regulated the related genes expression of PK, GPT, P5CS, SUS, SPS and CYP98A, and accumulated a large number of osmoregulation substances, such as citric acid, L-proline, D-sucrose and chlorogenic acid in the roots, ultimately affected the balance between plant growth and defense. In conclusion, this study reveals new insights into the key metabolic pathway in apple plants responses to Se.
Asunto(s)
Malus , Selenio , Selenio/metabolismo , Transcriptoma , Redes y Vías Metabólicas/genética , Aminoácidos/metabolismo , Sacarosa , Regulación de la Expresión Génica de las PlantasRESUMEN
Introduction: Both nitrogen (N) and magnesium (Mg) play important roles in biochemical and physiological processes in plants. However, the application of excessive N and insufficient Mg may be the factor leading to low nitrogen utilization rate (NUE) and fruit quality degradation in apple production. Methods: In this study, we analyzed the effects of different application rates of Mg (0, 50, 100, 150, 200 kg/ha) on the photosynthetic nitrogen use efficiency (PNUE), the accumulation and distribution of carbon (C), N metabolism, anthocyanin biosynthesis and fruit quality of the 'Red Fuji' apple in 2018 and 2019. Results: The results showed that the application of Mg significantly increased the 15NUE and increased the allocation rate of 15N in the leaves whereas the 15N allocation rate in the perennial organs and fruits was decreased. With the increase in Mg supply, the activities of N metabolism enzymes (NiR, GS, and GOGAT) were significantly promoted and the content of intermediate products in N metabolism ( NO 2 - , NH 4 + , and free amino acid) was significantly decreased. Furthermore, an appropriate rate of Mg significantly promoted the net photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE), enhanced the enzyme activities of C metabolism (SS, SPS, S6PDH), and increased the contents of sorbitol and sucrose in leaves. In addition, Mg upregulated the gene expression of sugar transporters (MdSOT1, MdSOT3, MdSUT1, and MdSUT4) in fruit stalk and fruit fresh; 13C isotope tracer technology also showed that Mg significantly increased the 13C allocation in the fruits. Mg also significantly increased the expression of anthocyanin biosynthesis genes (MdCHS and MdF3H) and transcription factors (MdMYB1 and MdbZIP44) and the content of anthocyanin in apple peel. Conclusion: The comprehensive analysis showed that the appropriate application of Mg (150 kg/ha) promoted PNUE, C-N metabolism, and anthocyanin biosynthesis in apple trees.
RESUMEN
Both magnesium (Mg) and nitrogen (N) play many important roles in plant physiological and biochemical processes. Plants usually exhibit low nitrogen utilization efficiency (NUE) under Mg deficiency conditions, but the mechanisms by which Mg regulates NUE are not well understood. Herein, we investigated biomass, nutrient uptake, sorbitol and sucrose transport, and relative gene expression in apple seedlings under various concentrations of Mg and N treatments in hydroponic cultures. We first observed that low Mg supply significantly limited plant growth and N, Mg concentrations. Increasing the supply of N, but not Mg, partially alleviated the inhibition of plant growth under low Mg stress, which indicated that Mg deficiency had a negative impact on plant growth because it inhibits N absorption. Moreover, we found that the expression of nitrate transporter genes MdNRT2.1 and MdNRT2.4 was significantly downregulated by low Mg stress, and sufficient Mg significantly promoted sucrose and sorbitol synthesis and transport from leaves to roots by regulating relevant enzyme activity and genes expression. Further experiments showed that exogenous sorbitol could rapidly restore MdNRT2.1/2.4 expression and nitrate uptake under low Mg availability without increasing internal Mg level, suggesting that Mg may regulate MdNRT2.1/2.4 expression by regulating more sorbitol transport to roots, the effect of Mg on N was indirect, sorbitol played a key role during this process. Taken together, Mg promoted sorbitol synthesis and transport into roots, thus upregulating the expression of MdNRT2.1/2.4 and increasing the absorption of nitrate.
Asunto(s)
Malus , Plantones , Plantones/metabolismo , Nitratos/metabolismo , Malus/genética , Malus/metabolismo , Magnesio/metabolismo , Nitrógeno/metabolismo , Sorbitol/farmacología , Sorbitol/metabolismo , Sacarosa/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Previous studies have determined that magnesium (Mg) in appropriate concentrations prevents plants from suffering from abiotic stress. To better understand the mechanism of Mg alleviation of aluminum (Al) stress in apple, we investigated the effect of Mg on plant growth, photosynthetic fluorescence, antioxidant system, and carbon (C) and nitrogen (N) metabolism of apple seedlings under Al toxicity (1.5 mmol/L) via a hydroponic experiment. Al stress induced the production of reactive oxygen in the leaves and roots and reduced the total dry weight (DW) by 52.37 % after 20 days of treatment relative to plants grown without Al, due to hindered photosynthesis and alterations in C and N metabolism. By contrast, total DW decreased by only 11.07 % in the Mg-treated plants under Al stress. Supplementation with 3.0 mmol/L Mg in the Al treatment decreased Al accumulation in the apple plants and reduced Al-induced oxidative damage by enhancing the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and reducing the production of H2O2 and malondialdehyde (MDA). Under Al stress, the Mg-treated plants showed a 46.17 % higher photosynthetic rate than the non-treated plants. Supplementation with Mg significantly increased the sucrose content by increasing sucrose synthase (SS) and sucrose-phosphate synthase (SPS) activities. Moreover, Mg facilitated the transport of 13C-carbohydrates from the leaves to roots. Regarding N metabolism, the nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT) activities in the roots and leaves of the Mg-treated plants were significantly higher than those of the non-treated plants under Al stress. Compared with the non-treated plants under Al stress, the Mg-treated plants exhibited a significantly high level of NO3- and soluble protein content in the leaves, roots, and stems, but a low level of free amino acids. Furthermore, Mg significantly improved nitrogen accumulation and enhanced the transport of 15N from the roots to leaves. Overall, our results revealed that Mg alleviates Al-induced growth inhibition by enhancing antioxidant capacity and C-N metabolism in apple seedlings.
Asunto(s)
Antioxidantes , Malus , Antioxidantes/farmacología , Antioxidantes/metabolismo , Plantones , Aluminio/toxicidad , Aluminio/metabolismo , Magnesio/farmacología , Magnesio/metabolismo , Malus/metabolismo , Carbono/metabolismo , Peróxido de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismoRESUMEN
Nitrogen (N) and potassium (K) have significant effects on apple peel color. To further understand the molecular mechanism of N-K regulation of apple color, we analyzed the apple peel under different N and K treatments using isotope labeling, transcriptomics, and metabolomics. Under high N treatments, fruit red color and anthocyanin content decreased significantly. High N decreased the 13C distribution rate and increased the Ndff values of fruits, while K increased the expression of MdSUTs and MdSOTs and promoted 13C transportation to fruits. Anthocyanin-targeted metabonomics and transcriptome analysis revealed that high N downregulated the expression of structural genes related to the anthocyanin synthesis pathway (MdPAL, Md4CL, MdF3H, MdANS, and MdUFGT) and their regulators (MdMYBs and MdbHLHs), and also decreased some metabolites contents. K alleviated this inhibition and seven anthocyanins were regulated by N-K. Our results improve the understanding of the synergistic regulation of apple fruit coloring by N-K.
Asunto(s)
Malus , Malus/genética , Potasio , Nitrógeno , Antocianinas , MetabolómicaRESUMEN
Excessive nitrogen (N) supply often leads to an imbalance of carbon (C) and N metabolism and inhibits plant growth. Sucrose, an important source and signaling substance of C in plants, is closely linked to N metabolism. However, it is not clear whether exogenous sucrose can mitigate the inhibitory effect of high N on plant growth by regulating C and N metabolism. In this study, we investigated the effects of exogenous sucrose on the growth, N metabolism, and C assimilation in the apple rootstock M26 seedlings under normal (5 mM NO3ï¼, NN) and high (30 mM NO3ï¼, HN) NO3ï¼ concentrations. Our results showed that high NO3ï¼ supply reduced plant growth, photosynthesis, and chlorophyll fluorescence, but spraying with 1% sucrose (HN + 1% Sucrose) significantly alleviated this inhibition. Application of 1% sucrose increased sucrose and sorbitol contents as well as sucrose-phosphate synthase and sucrose synthase activities in the plants under HN treatment and promoted the distribution of 13C photoassimilation products to the root. In addition, spraying with 1% sucrose alleviated the inhibition of N metabolizing enzyme activities by high NO3ï¼ supply, reduced NO3ï¼ accumulation and N content, increased free amino acid content, and promoted 15N distribution to the aboveground parts. However, spraying with 1% sucrose under the NN treatment negatively affected plant photosynthesis and carbon assimilation. In conclusion, exogenous sucrose increased the C level in plants in the presence of excess N, promoted the balance of C and N metabolism, and alleviated the inhibitory effect of high N on the apple plant growth.
RESUMEN
Potassium (K) is an indispensable nutrient element in the development of fruit trees in terms of yield and quality. It is unclear how a stable or unstable supply of K affects plant growth. We studied the root morphology and physiological and molecular changes in the carbon and nitrogen metabolism of M9T337 apple rootstock under different K levels and supply methods using hydroponics. Five K supply treatments were implemented: continuous low K (KL), initial low and then high K (KLH), appropriate and constant K (KAC), initial high and then low K (KHL), and continuous high K (KH). The results showed that the biomass, root activity, photosynthesis, and carbon and nitrogen metabolism of the M9T337 rootstocks were inhibited under KL, KH, KLH and KHL conditions. The KAC treatment promoted root growth by optimizing endogenous hormone content, enhancing carbon and nitrogen metabolism enzyme activities, improving photosynthesis, optimizing the distribution of carbon and nitrogen, and upregulating the transcription levels of nitrogen assimilation-related genes (nitrate reductase, glutamine synthetase, glutamate synthase, MdNRT1.1, MdNRT1.2, MdNRT1.5, MdNRT2.4). These results suggest that an appropriate and constant K supply ensures the efficient assimilation and utilization of nitrogen and carbon.
RESUMEN
In China, excessive application of nitrogen (N) fertilizer is common in intensive apple production. To resolve issues of benefit reduction and environmental pollution caused by excessive N, a two-year trial was conducted in an apple orchard with a split-plot design, in which the main factor was the N level (500, 400, 300, and 200 kg N ha-1 year-1, expressed as TN, TN80%, TN60%, and TN40%, respectively) and the deputy factor was whether or not to add 3,4-dimethylpyrazole phosphate (DMPP, expressed as +D). The effects of N reduction combined with DMPP on soil N transformation, fruit quality, economic benefits, and environmental effects were investigated. The results showed that DMPP reduced the production of nitrate and its vertical migration by inhibiting the abundance of AOB amoA and decreased N2O emission by reducing nirKC1 levels. Moreover, N reduction combined with DMPP improved N use efficiency (26.67-49.35%) and reduced N loss rate (15.25-38.76%). Compared with TN, TN60% + D increased the content of anthocyanin and soluble sugar by 21.15% and 13.09%, respectively, and decreased environmental costs caused by NH3 volatilization and N2O emission by 33.84%, while maintaining yield and N utilization rate at relatively high levels. Considering the agronomic, economic and environmental benefits, on the basis of traditional N application rate, 40% N reduction combined with DMPP (TN60% + D) could ensure target yield, corresponding quality and economic benefits, maintain soil N fertility, and reduce the risk of N losses to the environment. The present research could provide references for green, efficient, and sustainable development of apple production.
Asunto(s)
Fertilizantes , Malus , Agricultura , China , Yoduro de Dimetilfenilpiperazina , Fertilizantes/análisis , Frutas/química , Nitrógeno/análisis , SueloRESUMEN
Excessive application of nitrogen (N) fertilizer is common in Chinese apple production. High N reduced the contents of soluble sugar and total flavonoids by 16.05 and 19.01%, respectively, resulting in poor fruit quality. Moreover, high N increased the total N and decreased the total C and C/N ratio of apple fruits. On the basis of the transcriptomic, proteomic, and metabolomic analyses, the global network was revealed. High N inhibited the accumulation of carbohydrates (sucrose, glucose, and trehalose) and flavonoids (rhamnetin-3-O-rutinoside, rutin, and trihydroxyisoflavone-7-O-galactoside) in fruits, and more C skeletons were used to synthesize amino acids and their derivatives (especially low C/N ratio, e.g., arginine) to be transferred to N metabolism. This study revealed new insights into the decline in soluble sugar and flavonoids caused by high N, and hub genes (MD07G1172700, MD05G1222800, MD16G1227200, MD01G1174400, and MD02G1207200) and hub proteins (PFK, gapN, and HK) were obtained.
Asunto(s)
Malus , Frutas/genética , Metabolómica , Nitrógeno , ProteómicaRESUMEN
In order to define translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple, the 13C labeled tracer method was used in whole five-year-old 'Fuji'3/M26/Malus hupehensis (Pamp.) Rehder apple trees at different days after flowering (DAF). The changes in 13C translocation to the fruit, source strength of the leaves, and sink strength of the fruits were assessed. The results indicated that the δ13C value and 13C distribution rate of the fruit increased first and then decreased with the increase in the fruit development period, being higher from 120 to 135 DAF. The leaves appeared to moderately senesce in an attempt to maintain high photosynthesis during 120-135 DAF, which promoted the outward transport of photoassimilates. The single fruit weight and longitudinal and transverse diameter of the fruit increased rapidly during 120-150 DAF, which increased the sink zone for the unloading of photoassimilates in the fruit. The activity of sorbitol dehydrogenase (SDH) and amylase (AM), the content of indole-3-acetic acid (IAA), the gibberellin (GA3) and abscisic acid (ABA) in the fruit flesh, and the gene expression levels of MdSOT1, MdSOT2, MdSOT3, MdSUT1, and MdSUT4 in the fruit stalk tissue were higher during 120-135 DAF. At this point, the difference in the sorbitol content between the fruit stalk and fruit flesh was also at the highest level of the entire year. These factors together increased the sink activity of the fruit, thus improving the photoassimilate transport efficiency to the fruit.
Asunto(s)
Isótopos de Carbono/metabolismo , Frutas/crecimiento & desarrollo , Malus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hojas de la PlantaRESUMEN
Nitrogen (N) is one of the most required mineral elements for plant growth, and potassium (K) plays a vital role in nitrogen metabolism, both elements being widely applied as fertilizers in agricultural production. However, the exact relationship between K and nitrogen use efficiency (NUE) remains unclear. Apple dwarf rootstock seedlings (M9T337) were used to study the impacts of different K levels on plant growth, nitrogen metabolism, and carbon (C) assimilation in water culture experiments for 2 years. The results showed that both deficiency and excess K inhibited the growth and root development of M9T337 seedlings. When the K supply concentration was 0 mM and 12 mM, the biomass of each organ, root-shoot ratio, root activity and NO3 - ion flow rate decreased significantly, net photosynthetic rate (P n) and photochemical efficiency (F v/F m) being lower. Meanwhile, seedlings treated with 6 mM K+ had higher N and C metabolizing enzyme activities and higher nitrate transporter gene expression levels (NRT1.1; NRT2.1). 13C and 15N labeling results showed that deficiency and excess K could not only reduce 15N absorption and 13C assimilation accumulation of M9T337 seedlings, but also reduced the 15N distribution ratio in leaves and 13C distribution ratio in roots. These results suggest that appropriate K supply (6 mM) was optimal as it enhanced photoassimilate transport from leaves to roots and increased NUE by influencing photosynthesis, C and N metabolizing enzyme activities, nitrate assimilation gene activities, and nitrate transport.
RESUMEN
In order to solve the problems of nitrogen (N) losses and fruit quality degradation caused by excessive N fertilizer application, different dosages of the nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP) (0, 0.5, 1, 2, and 4 mg kg-1 soil), were applied during the later stage of 'Red Fuji' apple (Malus domestica Borkh.) fruit expansion in 2017 and 2018. The effects of DMPP on soil N transformation, carbon (C)-N nutrition of tree, and fruit quality were investigated. Results revealed that DMPP decreased the abundance of ammonia-oxidizing bacteria (AOB) amoA gene, increased the retention of NH4 +-N, and decreased NO3 --N concentration and its vertical migration in soil. DMPP reduced 15N loss rates and increased 15N residual and recovery rates compared to the control. 13C and 15N double isotope labeling results revealed that DMPP reduced the capacity of 15N absorption and regulation in fruits, decreased 15N accumulation in fruits and whole plant, and increased the distribution of 13C from vegetative organs to fruits. DMPP increased fruit anthocyanin and soluble sugar contents, and had no significant effect on fruit yield. The comprehensive analysis revealed that the application of 1 mg DMPP kg-1 soil during the later stage of fruit expansion effectively reduced losses due to N and alleviated quality degradation caused by excessive N fertilizer application.
RESUMEN
A field experiment was carried out in a six-year old 'Fuji'3/M26/Malus hupehensis Rehd. apple with the 13C tracer method to examine the changes of chlorophyll fluorescence parameters, photosynthetic characteristics of leaf, sugar transporter gene expression, 13C assimilation capability and the characteristics of translocation and distribution of 13C-photoassimilates to fruit under different levels of potassium addition (K2O 0, 0.5%, 1.0%, 1.5%, 2.0%, expressed by CK, K1, K2, K3, K4, respectively). Potassium aqueous solution smear the leaves within 20 cm around the fruit at fruit enlargement stage. Compared with other treatments, K3 treatment significantly increased Rubisco enzyme activity, net photosynthetic rate, maximal photochemical efficiency of PSII, actual photochemical efficiency of PSII, coefficient of photochemical quenching, sorbitol and sucrose content, sorbitol 6-phosphate dehydrogenase (S6PDH) and sucrose phosphate synthase (SPS) enzyme activities and 13C assimilation capability of leaves. Furthermore, K3 treatment increased gene expression of sorbitol transporter MdSOT1 and MdSOT2 and sucrose transporter MdSUT4, and promoted the unloading of sugar in fruit. The 13C of self retention (self leaves and self branches) was the highest in CK (82.6%) and the lowest in K3 treatment (60.5%). With increasing potassium concentration, the 13C absorption of fruit first increased and then decreased, which was the highest in K3 treatment (1.31 mg·g-1) and the lowest in CK (0.57 mg·g-1). Our results indicated that foliage application of potassium solution improved PSII photochemical efficiency, activities of key enzymes related with carbon assimilation, synthesis ability, and outward transport ability of photosynthates in leaves, and consequently promoted the directional transportation of sugar to fruit. The amount of photoassimilates transported to fruit was the most under 1.5% K2O treatment (K3).
Asunto(s)
Malus , Frutas , Fotosíntesis , Hojas de la Planta , PotasioRESUMEN
We examined nitrogen use efficiency of 15N-urea of 15-year-old 'Gala' apple trees by broadcast fertilization (T1), nitrogen fertilization with drip irrigation (T2) and nitrogen fertilization with subsurface irrigation (T3), to further improve the water and fertilizer integration technology for apple orchard and to improve nitrogen utilization efficiency. The results showed that leaf area, chlorophyll, and leaf nitrogen content of leaves were significantly higher in T3 treatment than those in T1 and T2 treatments. Soil mineral nitrogen content (20-40 cm) in each period followed the order of T3>T2>T1, while that in 0-20 cm followed an order of T2>T3>T1. The Ndff value at organ level (the contribution rate of the 15N amount absorbed by various organs of the tree to the total nitrogen content of the organ) was the highest in T3 treatment in each period, followed by T2 and T1 treatments. The utilization rate of 15N in the fruit ripening period followed an order of T3>T2>T1. The 15N utilization rate of T3 reached 24.2%, being 1.19 and 1.65 times of T2 and T1, respectively. The 15N distribution rate in the fruits during the fruit maturity stage was the highest in T1 treatment, while that in the storage organs was the highest in T2 treatment and that in the reproduction organs was the highest in T3 treatment. The single fruit weight, yield, soluble solids, hardness, soluble sugar and sugar-acid ratio were the highest in T3 treatment, followed by T2 and T1 treatments. In summary, nitrogen application by percolation irrigation (subsurface application) significantly promoted leaf growth and nitrogen utilization of apple tree, and improved fruit yield and quality.
Asunto(s)
Malus , Fertilizantes , Frutas , Nitrógeno , Suelo , AguaRESUMEN
In order to improve the problem of poor coloring caused by high fruit nitrogen in apple production, we studied the effects of different concentrations of abscisic acid (ABA: 0, 50, 100, and 150 mg/L) and fluridone (ABA biosynthesis inhibitor) on the fruit of 'Red Fuji' apple (Malus Domestica Borkh.) in the late stage of apple development (135 days after blooming) in 2017 and 2018. The effects of these treatments on the distribution of 13C and 15N and anthocyanin synthesis in fruit were studied. The results showed that the expression levels of ABA synthesis and receptor genes in the peel and flesh were upregulated by exogenous ABA treatment. An appropriate concentration of ABA significantly increased the expression of anthocyanin synthesis genes and transcription factors and increased the content of anthocyanin in the peel. The results of 13C and 15N double isotope labeling showed that exogenous ABA coordinated the carbon-nitrogen nutrient of apple fruit in the late stage of the development, reduced the accumulation of fruit nitrogen, increased the accumulation of fruit carbon and sugar, provided a substrate for anthocyanin synthesis, or promoted anthocyanin synthesis through the sugar signal regulation mechanism. Comprehensive analysis showed that the application of 100 mg/L ABA effectively improved the problem of poor coloring caused by high fruit nitrogen in the late stage of apple development and is beneficial to the accumulation of carbon in fruit and the formation of color.