Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 47(4): 965-968, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167570

RESUMEN

We propose a high-sensitivity dynamic distributed pressure sensor using frequency-scanning phase-sensitive optical time-domain reflectometry (φ-OTDR) in a single-mode fiber (SMF), where an injection locking laser working as both filter and amplifier is used to generate the multi-frequency signals under a double-sideband modulation. The pressure sensitivity of the SMF is measured to be 702.5 MHz/MPa, which is approximately 1000 times larger than that of the Brillouin optical time-domain analysis technique. Subsequently, a dynamic pressure experiment is carried out in the case of rapid pressure relief from 2 to 0 MPa so that a maximum sampling rate of 33.3 kHz for a 25-m SMF is achieved, and the measurement uncertainty of 0.61 kPa for the proposed scheme is demonstrated.

2.
Opt Lett ; 46(17): 4308-4311, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470001

RESUMEN

We proposed a temperature-compensated distributed refractive index (RI) sensor using an etched multi-core fiber (MCF) in optical frequency domain reflectometry. The MCF contains inner and outer cores and is etched until the outer core is exposed. Therefore, the outer core can be used for distributed RI sensing, and the inner core can be used for temperature compensation. The sensing length of 19 cm and the spatial resolution of 5.3 mm are achieved in the experiment. The RI sensing range is as wide as 1.33-1.44 refractive index units (RIU), and the maximum sensitivity of 47 nm/RIU is obtained around 1.44 RIU. Additionally, the temperature sensitivity is 9.8 pm/°C. Using this sensor, we successfully detected the glycerol diffusion process in water.

3.
Opt Express ; 29(12): 19034-19048, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154146

RESUMEN

We proposed a novel temperature-compensated multi-point refractive index (RI) sensing system by the combination of the cascaded Fabry-Perot (FP) sensors and the frequency modulated continuous wave (FMCW) interferometry. The former is used for simultaneous sensing of RI and temperature, and the latter is used for multiplexing a series of the cascaded FP sensors to realize multi-point sensing. By means of Fourier transform-based algorithms, the interference spectra of each sub-FP sensors can be divided and demodulated independently. Experimentally, three cascaded FP sensors are multiplexed to verify multi-point RI and temperature sensing ability. RI sensitivity up to ∼1200 nm/RIU is obtained within RI range from 1.3330 to 1.3410, and temperature sensitivity up to ∼0.17 nm/°C is obtained within temperature range from 20 °C to 80 °C. The RI precision is as high as 10-5 RIU and the temperature precision is as high as 0.05 °C. In addition, the prospective multiplexing number could reach about 4000 estimated by the minimum detectable light power. The proposed sensing system has potential advantages in the practical applications that require a large number sensing points.

4.
Sensors (Basel) ; 18(10)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249035

RESUMEN

Micro-displacement measurements play a crucial role in many industrial applications. Aiming to address the defects of existing optical-fiber displacement sensors, such as low sensitivity and temperature interference, we propose and demonstrate a novel surface plasmon resonance (SPR)-based optical-fiber micro-displacement sensor with temperature compensation. The sensor consists of a displacement-sensing region (DSR) and a temperature-sensing region (TSR). We employed a graded-index multimode fiber (GI-MMF) to fabricate the DSR and a hetero-core structure fiber to fabricate the TSR. For the DSR, we employed a single-mode fiber (SMF) to change the radial position of the incident beam as displacement. The resonance angle in the DSR is highly sensitive to displacement; thus, the resonance wavelength of the DSR shifts. For the TSR, we employed polydimethylsiloxane (PDMS) as a temperature-sensitive medium, whose refractive index is highly sensitive to temperature; thus, the resonance wavelength of the TSR shifts. The displacement and temperature detection ranges are 0⁻25 µm and 20⁻60 °C; the displacement and temperature sensitivities of the DSR are 4.24 nm/µm and -0.19 nm/°C, and those of the TSR are 0.46 nm/µm and -2.485 nm/°C, respectively. Finally, by means of a sensing matrix, the temperature compensation was realized.

5.
Sensors (Basel) ; 18(8)2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096920

RESUMEN

Curvature measurement plays an important role in many fields. Aiming to overcome shortcomings of the existing optical fiber curvature sensors, such as complicated structure and difficulty in eliminating temperature noise, we proposed and demonstrated a simple optical fiber curvature sensor based on surface plasmon resonance. By etching cladding of the step-index multimode fiber and plating gold film on the bare core, the typical Kretschmann configuration is implemented on fiber, which is used as the bending-sensitive region. With increases in the curvature of the optical fiber, the resonance wavelength of the SPR (Surface Plasmon Resonance) dip linear red-shifts while the transmittance decreases linearly. In the curvature range between 0 and 9.17 m-1, the wavelength sensitivity reached 1.50 nm/m-1 and the intensity sensitivity reached -3.66%/m-1. In addition, with increases in the ambient temperature, the resonance wavelength of the SPR dips linearly blueshifts while the transmittance increases linearly. In the temperature range between 20 and 60 °C, the wavelength sensitivity is -0.255 nm/°C and the intensity sensitivity is 0.099%/°C. The sensing matrix is built up by combining the aforementioned four sensitivities. By means of the dual modulation method, the cross-interference caused by temperature change is eliminated. Additionally, simultaneous measurement of curvature and temperature is realized.

6.
Opt Lett ; 42(15): 2948-2951, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957216

RESUMEN

We propose and demonstrate a novel and compact optical-fiber temperature sensor with a high sensitivity and high figure of merit (FOM) based on surface plasmon resonance (SPR). The sensor is fabricated by employing a single-mode twin-core fiber (TCF), which is polished as a circular truncated cone and coated with a layer of gold film and a layer of polydimethylsiloxane (PDMS). Owing to the high refractive index sensitivity of SPR sensors and high thermo-optic coefficient of PDMS, the sensor realizes a high temperature sensitivity of -4.13 nm/°C to -2.07 nm/°C in the range from 20°C to 70°C, transcending most other types of optical-fiber temperature sensors. Owing to the fundamental mode beam transmitting in the TCF, the sensor realizes a high FOM of up to 0.034/°C, more than twice that of SPR sensors based on multimode fiber. The proposed temperature sensor is meaningful and will have potential applications in many fields, such as biomedical and biomaterial.

7.
Opt Lett ; 42(10): 1982-1985, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504729

RESUMEN

We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 µm, a high sensitivity with maximum up to 10.32 nm/µm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

8.
Opt Lett ; 41(20): 4649-4652, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28005858

RESUMEN

We propose and demonstrate a whispering gallery mode (WGM) resonance-based temperature sensor, where the microresonator is made of a DCM (2-[2-[4-(dimethylamino)phenyl] ethenyl]-6-methyl-4H-pyran-4-ylidene)-doped oil droplet (a liquid material) immersed in the water solution. The oil droplet is trapped, controlled, and located by a dual-fiber optical tweezers, which prevents the deformation of the liquid droplet. We excite the fluorescence and lasing in the oil droplet and measure the shifts of the resonance wavelength at different temperatures. The results show that the resonance wavelength redshifts when the temperature increases. The testing sensitivity is 0.377 nm/°C in the temperature range 25°C-45°C. The results of the photobleaching testing of the dye indicate that measured errors can be reduced by reducing the measured time. As far as we know, this is the first time a WGM temperature sensor with a liquid state microcavity has been proposed. Compared with the solid microresonator, the utilization of the liquid microresonator improves the thermal sensitivity and provides the possibility of sensing in liquid samples or integrating into the chemical analyzers and microfluidic systems.

9.
Opt Lett ; 41(18): 4320-3, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27628387

RESUMEN

We propose and demonstrate an effective method to adjust the dynamic range of a fiber surface plasmon resonance (SPR) sensor by introducing a multimode fiber-sensing probe with a dual-truncated-cone (DTC) structure. When the grind angle of the DTC structure increases, the dynamic range redshifts. Based on this result, we fabricate a quasi-distributed two-channel multimode fiber SPR sensor by cascaded-connecting a DTC-sensing probe of 14° grind angle and a traditional transmitted multimode fiber (TMF)-sensing probe in the same fiber. The corresponding sensitivities of two sensing probes are 3423.08 nm/RIU and 2288.46 nm/RIU. By using this quasi-distributed multichannel fiber SPR-sensing approach, we may improve the detecting accuracy by extracting, calibrating, and compensating for the signals caused by the nonspecific bindings, other physical absorptions, and temperature changes in detecting samples, truly achieving dynamic detection in real-time. The excellence of this multichannel fiber SPR sensor is that the sensitivity of each subchannel-sensing probe stays unreduced after it is cascaded-connected in the main-channel fiber; the sensor is based on the multimode fiber, which is inexpensive, accessible, and convenient to be universalized in applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA