Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5414, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109517

RESUMEN

Designing polytypic homojunction is an efficient way to regulate photogenerated electrons and holes, thereafter bringing desired physical and chemical properties and being attractive photocatalysts for solar-to-hydrogen conversion. However, the high-yield and controllable synthesis of well-defined polytypes especially for multinary chalcogenide - the fundamental factor favoring highly efficient solar-to-hydrogen conversion - has yet to be achieved. Here, we report a general colloidal method to construct a library of polytypic copper-based quaternary sulfide nanocrystals, including Cu2ZnSnS4, Cu2CdSnS4, Cu2CoSnS4, Cu2MnSnS4, Cu2FeSnS4, Cu3InSnS5 and Cu3GaSnS5, which can be synthesized by selective epitaxial growth of kesterite phase on wurtzite structure. Besides, this colloidal method allows the precise controlling of the homojunction number corresponding to the photocatalytic performance. The single-homojunction and double-homojunction polytypic Cu2ZnSnS4 nanocrystal photocatalysts show 2.8-fold and 3.9-fold improvement in photocatalytic hydrogen evolution rates relative to the kesterite nanocrystals, respectively. This homojunction existed in the polytypic structure opens another way to engineer photocatalysts.

2.
J Am Chem Soc ; 143(18): 7013-7020, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33929193

RESUMEN

Axially, epitaxially organizing nano-objects of distinct compositions and structures into superlattice nanowires enables full utilization of sunlight, readily engineered band structures, and tunable geometric parameters to fit carrier transport, thus holding great promise for optoelectronics and solar-to-fuel conversion. To maximize their efficiency, the general and high-precision synthesis of colloidal axial superlattice nanowires (ASLNWs) with programmable compositions and structures is the prerequisite; however, it remains challenging. Here, we report an axial encoding methodology toward the ASLNW library with precise control over their compositions, dimensions, crystal phases, interfaces, and periodicity. Using a predesigned, editable nanoparticle framework that offers the synthetic selectivity, we are able to chemically decouple adjacent sub-objects in ASLNWs and thus craft them in a controlled approach, yielding a library of distinct ASLNWs. We integrate therein plasmonic, metallic, or near-infrared-active chalcogenides, which hold great potential in solar energy conversion. Such synthetic capability enables a performance boost in target applications, as we report order-of-magnitude enhanced photocatalytic hydrogen production rates using optimized ASLNWs compared to corresponding solo objects. Furthermore, it is expected that such unique superlattice nanowires could bring out new phenomena.

3.
Nat Commun ; 11(1): 5194, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060575

RESUMEN

Although solar-driven water splitting on semiconductor photocatalysts is an attractive route for hydrogen generation, there is a lack of excellent photocatalysts with high visible light activity. Due to their tunable bandgaps suitable for superior visible-light absorption, copper-based quaternary sulfides have been the important candidates. Here, we first assessed the preferred facet of wurtzite Cu-Zn-In-S for photocatalytic hydrogen evolution reaction using the relevant Gibbs free energies determined by first principle calculation. We then developed a colloidal method to synthesize single crystalline wurtzite Cu-Zn-In-S nanobelts (NBs) exposing (0001) facet with the lowest reaction Gibbs energy, as well as Cu-Zn-Ga-S NBs exposing (0001) facet. The obtained single crystalline Cu-Zn-In-S and Cu-Zn-Ga-S NBs exhibit superior hydrogen production activities under visible-light irradiation, which is composition-dependent. Our protocol represents an alternative surface engineering approach to realize efficient solar-to-chemical conversion of single crystalline copper-based multinary chalcogenides.

4.
Science ; 368(6496): 1228-1233, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32527828

RESUMEN

Chemicals manufacturing consumes large amounts of energy and is responsible for a substantial portion of global carbon emissions. Electrochemical systems that produce the desired compounds by using renewable electricity offer a route to lower carbon emissions in the chemicals sector. Ethylene oxide is among the world's most abundantly produced commodity chemicals because of its importance in the plastics industry, notably for manufacturing polyesters and polyethylene terephthalates. We applied an extended heterogeneous:homogeneous interface, using chloride as a redox mediator at the anode, to facilitate the selective partial oxidation of ethylene to ethylene oxide. We achieved current densities of 1 ampere per square centimeter, Faradaic efficiencies of ~70%, and product specificities of ~97%. When run at 300 milliamperes per square centimeter for 100 hours, the system maintained a 71(±1)% Faradaic efficiency throughout.

6.
Nat Nanotechnol ; 15(3): 192-197, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31959929

RESUMEN

Chirality-the property of an object wherein it is distinguishable from its mirror image-is of widespread interest in chemistry and biology1-6. Regioselective magnetization of one-dimensional semiconductors enables anisotropic magnetism at room temperature, as well as the manipulation of spin polarization-the properties essential for spintronics and quantum computing technology7. To enable oriented magneto-optical functionalities, the growth of magnetic units has to be achieved at targeted locations on a parent nanorod. However, this challenge is yet to be addressed in the case of materials with a large lattice mismatch. Here, we report the regioselective magnetization of nanorods independent of lattice mismatch via buffer intermediate catalytic layers that modify interfacial energetics and promote regioselective growth of otherwise incompatible materials. Using this strategy, we combine materials with distinct lattices, chemical compositions and magnetic properties, that is, a magnetic component (Fe3O4) and a series of semiconducting nanorods absorbing across the ultraviolet and visible spectrum at specific locations. The resulting heteronanorods exhibit optical activity as induced by the location-specific magnetic field. The regioselective magnetization strategy presented here enables a path to designing optically active nanomaterials for chirality and spintronics.

7.
Nature ; 577(7791): 509-513, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747679

RESUMEN

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources1. However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge2. Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity3-5, and this has recently been explored for the reaction on copper by controlling morphology6, grain boundaries7, facets8, oxidation state9 and dopants10. Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far9), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums11, adsorbed on copper. We find that the adhered molecules improve the stabilization of an 'atop-bound' CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.

8.
Nat Commun ; 10(1): 5186, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31780655

RESUMEN

The electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high-energy-density C3 products remains relatively low. We reason that C3 electrosynthesis relies on a higher-order reaction pathway that requires the formation of multiple carbon-carbon (C-C) bonds, and thus pursue a strategy explicitly designed to couple C2 with C1 intermediates. We develop an approach wherein neighboring copper atoms having distinct electronic structures interact with two adsorbates to catalyze an asymmetric reaction. We achieve a record n-propanol Faradaic efficiency (FE) of (33 ± 1)% with a conversion rate of (4.5 ± 0.1) mA cm-2, and a record n-propanol cathodic energy conversion efficiency (EEcathodic half-cell) of 21%. The FE and EEcathodic half-cell represent a 1.3× improvement relative to previously-published CO-to-n-propanol electroreduction reports.

9.
Nat Commun ; 10(1): 4807, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641126

RESUMEN

The upgrading of CO2/CO feedstocks to higher-value chemicals via energy-efficient electrochemical processes enables carbon utilization and renewable energy storage. Substantial progress has been made to improve performance at the cathodic side; whereas less progress has been made on improving anodic electro-oxidation reactions to generate value. Here we report the efficient electroproduction of value-added multi-carbon dimethyl carbonate (DMC) from CO and methanol via oxidative carbonylation. We find that, compared to pure palladium controls, boron-doped palladium (Pd-B) tunes the binding strength of intermediates along this reaction pathway and favors DMC formation. We implement this doping strategy and report the selective electrosynthesis of DMC experimentally. We achieve a DMC Faradaic efficiency of 83 ± 5%, fully a 3x increase in performance compared to the corresponding pure Pd electrocatalyst.

10.
Nat Commun ; 9(1): 4614, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30397203

RESUMEN

The electrochemical reduction of carbon monoxide is a promising approach for the renewable production of carbon-based fuels and chemicals. Copper shows activity toward multi-carbon products from CO reduction, with reaction selectivity favoring two-carbon products; however, efficient conversion of CO to higher carbon products such as n-propanol, a liquid fuel, has yet to be achieved. We hypothesize that copper adparticles, possessing a high density of under-coordinated atoms, could serve as preferential sites for n-propanol formation. Density functional theory calculations suggest that copper adparticles increase CO binding energy and stabilize two-carbon intermediates, facilitating coupling between adsorbed *CO and two-carbon intermediates to form three-carbon products. We form adparticle-covered catalysts in-situ by mediating catalyst growth with strong CO chemisorption. The new catalysts exhibit an n-propanol Faradaic efficiency of 23% from CO reduction at an n-propanol partial current density of 11 mA cm-2.

11.
Nat Commun ; 9(1): 4947, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470752

RESUMEN

Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates - features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires - something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots.

12.
Nat Commun ; 9(1): 3828, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237471

RESUMEN

Copper-based materials are promising electrocatalysts for CO2 reduction. Prior studies show that the mixture of copper (I) and copper (0) at the catalyst surface enhances multi-carbon products from CO2 reduction; however, the stable presence of copper (I) remains the subject of debate. Here we report a copper on copper (I) composite that stabilizes copper (I) during CO2 reduction through the use of copper nitride as an underlying copper (I) species. We synthesize a copper-on-nitride catalyst that exhibits a Faradaic efficiency of 64 ± 2% for C2+ products. We achieve a 40-fold enhancement in the ratio of C2+ to the competing CH4 compared to the case of pure copper. We further show that the copper-on-nitride catalyst performs stable CO2 reduction over 30 h. Mechanistic studies suggest that the use of copper nitride contributes to reducing the CO dimerization energy barrier-a rate-limiting step in CO2 reduction to multi-carbon products.

13.
Small ; 13(13)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28134465

RESUMEN

A new kind of multitetrahedron sheath ternary ZnS-(CdS/Au) hetero-nanorod is prepared, in which one 1D ultrathin ZnS nanorod is integrated with segmented tetrahedron sheaths made of CdS, and more importantly, Au nanoparticles can be decorated in a targeted manner onto the vertexes and edges of CdS tetrahedron sheaths solely, for achieving performance improvement in photoelectric and photochemical conversion applications.

14.
J Am Chem Soc ; 138(17): 5576-84, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27063512

RESUMEN

Heterocrystalline polytype nanostructured semiconductors have been attracting more and more attention in recent years due to their novel structures and special interfaces. Up to now, controlled polytypic nanostructures are mostly realized in II-VI and III-V semiconductors. Herein, we report the synthesis and photoelectrochemical properties of Cu-based ternary I-III-VI2 chalcogenide polytypic nanocrystals, with a focus on polytypic CuInS2 (CIS), CuInSe2 (CISe), and CuIn(S0.5Se0.5)2 alloy nanocrystals. Each obtained polytypic nanocrystal is constructed with a wurtzite hexagonal column and a zinc blende/chalcopyrite cusp, regardless of the S/Se ratio. The growth mechanisms of polytypic CIS and CISe nanocrystals have been studied by time-dependent experiments. The polytypic nanocrystals are solution-deposited on indium-tin oxide glass substrate and used as a photoelectrode, thus showing stable photoelectrochemical activity in aqueous solution. Density functional theory calculation was used to study the electronic structure and the band gap alignment. This versatile synthetic method provides a new route for synthesis of novel polytypic nanostructured semiconductors with unique properties.

15.
Angew Chem Int Ed Engl ; 55(22): 6396-400, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27062543

RESUMEN

The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion.

16.
Angew Chem Int Ed Engl ; 54(39): 11495-500, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26276905

RESUMEN

It has been a long-standing demand to design hetero-nanostructures for charge-flow steering in semiconductor systems. Multi-component nanocrystals exhibit multifunctional properties or synergistic performance, and are thus attractive materials for energy conversion, medical therapy, and photoelectric catalysis applications. Herein we report the design and synthesis of binary and ternary multi-node sheath hetero-nanorods in a sequential chemical transformation procedure. As verified by first-principles simulations, the conversion from type-I ZnS-CdS heterojunction into type-II ZnS-(CdS/metal) ensures well-steered collections of photo-generated electrons at the exposed ZnS nanorod stem and metal nanoparticles while holes at the CdS node sheaths, leading to substantially improved photocatalytic hydrogen-evolution performance.

17.
Chem Commun (Camb) ; 51(26): 5676-8, 2015 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-25715319

RESUMEN

Unique kinked semiconductor-metal Au-Ag2S-ZnS and Au-Ag2S-ZnS-Au heteronanorods have been synthesized for the first time by a seed-mediated growth method. A plausible mechanism for the formation of kinked heteronanorods is proposed. The catalytic activity of such novel kinked semiconductor-metal heteronanorods with selective deposition and uniform morphology is also investigated via a model reaction based on the reduction of 4-nitrophenol by NaBH4.

18.
Chem Sci ; 6(5): 3038-3043, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28706679

RESUMEN

Hollow alloyed nanoparticles (NPs) represent one kind of promising fuel cell electrocatalyst. However, the formation of single-cavity hollow structures by a dealloying process is quite challenging owing to the random leaching/dissolution of transition metals, surface passivation and the limited diffusion distance of the noble metals. Here we present a facile method to prepare hollow PtPdCu NPs derived from monodisperse alloy NPs by an acetic acid-assisted dealloying process. Here, acetic acid not only acts as a chemical etching agent but also plays an important role in the removal of the residual surfactants for colloidal NPs. Our findings rectify the current knowledge that hollow alloyed NPs cannot be prepared by a dealloying strategy and provide further understanding of the dealloying process in a ternary system. Such unique hollow ternary PtPdCu NPs exhibit outstanding durability and improved catalytic activity toward the oxygen reduction reaction.

19.
Small ; 10(7): 1394-402, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24243682

RESUMEN

Colloidal synthesis of kinked ultrathin ZnS nanorods/nanowires with mixed phases using tiny Ag2S nanocrystals as catalysts is reported. It is found that chloride ions can induce the controlled morphology transition from straight to kinking. The synthetic parameters modulating the growth of kinked ZnS nanorods/nanowires are systematically investigated. Chloride ions introduced in the reaction can generate more proportion of wurtzite phase by slowing the nucleation and growth rates during the growth of one-dimensional (1D) ZnS nanorods/nanowires. The formation of kinked morphology is responsible for the increased domains of mixed stacking and twinning in single 1D nanostructures. The present recipe on controlled synthesis of 1D kinked nanorods/nanowires provides a model of crystal growth control, and these unique 1D nanostructures may also offer new opportunities to fabricate nanodevices with special functions.

20.
Chem Commun (Camb) ; 48(78): 9762-4, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22918375

RESUMEN

Unique Cu(2)S-PbS heteronanostructures with good photothermal conversion effect have been synthesized for the first time by a Cu(1.94)S nanocrystal seed mediated colloidal solution-phase growth method. The present nanocrystal seed mediated growth method may be extended for the growth of other unique semiconductor heteronanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA