Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 665: 793-800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554469

RESUMEN

Considerable amount of high-value transition metals components can be recycled in spent ternary lithium-ion batteries. In this study, we utilized the conductive agent carbon black, obtained from the leaching waste resulting from the chemical recovery of spent lithium-nickel-manganese-cobalt (NCM) oxide cathode materials. This process allows us to create valuable bifunctional catalysts for the oxygen reduction reaction and oxygen evolution reaction (ORR/OER), facilitated by a facile cold plasma activation method, as a part of lithium batteries circular economy. The activated conductive agent (RCA-30) exhibited an ORR half-wave potential of 0.74 V (vs. RHE) in 0.1 mol/L KOH solution, and an OER overpotential of 360 mV at 10 mA cm-2 in 1 mol/L KOH electrolyte, owing to nitrogen doping of carbon black and activation of surface metal oxides. The complete zinc-air batteries incorporating the activated catalysts at the cathode exhibited an open circuit potential of up to 1.48 V and sustained cycling for 100 h at a current density of 5 mA cm-2. Additionally, the activated catalysts contributed to a power density of 92 mW cm-2 and a full discharge capacity of 640 mAh/g.

2.
J Colloid Interface Sci ; 662: 814-821, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382366

RESUMEN

As a potential catalyst for hydrogen evolution reaction (HER), tungsten nitride (W2N) has attracted extensive attention, due to its Pt-like characteristic. Nevertheless, insufficient active sites, slow electron transfer, and lack of scale-up nano-synthesis methods significantly limit its practical application. Constructing multi-component active centers and interface-rich heterojunctions to increase exposed active sites and modulate interface electrons is a very effective modification strategy. Therefore, a nano-heterostructure formed from tungsten nitride, tungsten phosphide and tungsten encapsulated in N, P co-doped carbon nanofiber (W2N/WP/W@NPC) was synthesized by a flexible and scalable electrospinning technology. Experimental results reveal that abundant heterojunctions are formed, electron transfer occurs between tungsten nitride and tungsten phosphide, and carbon nanofibers play a confinement role. The optimized W2N/WP/W@NPC-3 electrocatalyst demonstrates excellent HER catalytic activity and robust stability in both acidic and base media. Furthermore, the overall water splitting performance is tested using W2N/WP/W@NPC as the cathode through a two-electrode electrolyzer, which also exhibits impressive electrochemical performance.

3.
Small Methods ; : e2301225, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279586

RESUMEN

Aluminum-oxygen batteries (AOBs) own the benefits of high energy density (8.14 kWh kg-1 ), low cost, and high safety. However, the design of a cathode with high surface area, structure integrity, and good catalytic performance is still challenging for rechargeable AOBs. Herein, the fabrication of a robust self-supporting cathode using 3D graphene aerogel (3DGA) for rechargeable AOBs is demonstrated. Electroanalysis showed that the 3DGA presented good catalytic activity in both oxygen reduction and evolution reactions, which allowed the AOB to operate for >90 cycles with low overpotentials at a current density of 0.2 mA cm-2 , and a high Coulombic efficiency of ca. 99% using ionic liquid as electrolyte. In comparison, the cell with the carbon paper cathode can only cycle for 50 rounds. The excellent cyclic performance can be attributed to the porous structure, large surface area, good electric conductivity, and catalytic activity of the 3DGA, which is prospective to be applied for other metal-air batteries, fuel cells, and supercapacitors.

4.
ACS Omega ; 8(39): 36171-36178, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810692

RESUMEN

Copper nanoparticles (CuNPs) and gold nanoclusters (AuNCs) show a high catalytic performance in generating hydrogen peroxide (H2O2), a property that can be exploited to kill disease-causing microbes and to carry carbon-free energy. Some combinations of NPs/NCs can generate synergistic effects to produce stronger antiseptics, such as H2O2 or other reactive oxygen species (ROS). Herein, we demonstrate a novel facile AuNC surface decoration method on the surfaces of CuNPs using galvanic displacement. The Cu-Au bimetallic NPs presented a high selective production of H2O2 via a two-electron (2e-) oxygen reduction reaction (ORR). Their physicochemical analyses were conducted by scanning electron microscopy (SEM), transmitting electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). With the optimized Cu-Au1.5NPs showing their particle sizes averaged in 53.8 nm, their electrochemical analysis indicated that the pristine AuNC structure exhibited the highest 2e- selectivity in ORR, the CuNPs presented the weakest 2e- selectivity, and the optimized Cu-Au1.5NPs exhibited a high 2e- selectivity of 95% for H2O2 production, along with excellent catalytic activity and durability. The optimized Cu-Au1.5NPs demonstrated a novel pathway to balance the cost and catalytic performance through the appropriate combination of metal NPs/NCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA