Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138110

RESUMEN

It has been established that the human atrial natriuretic peptide is able to alter the effect of azithromycin on Kytococcus schroeteri H01 and Staphylococcus aureus 209P monospecies and binary biofilms. The effect of the hormone depends on the surface type and cultivation system, and it may have both enhancing and counteracting effects. The antagonistic effect of the hormone was observed mostly on hydrophobic surfaces, whereas the additive effect was observed on hydrophilic surfaces like glass. Also, the effect of the hormone depends on the antibiotic concentration and bacterial species. The combination of azithromycin and ANP led to an amplification of cell aggregation in biofilms, to the potential increase in matrix synthesis, and to a decrease in S. aureus in the binary community. Also, ANP, azithromycin, and their combinations caused the differential expression of genes of resistance to different antibiotics, like macrolides (mostly increasing expression in kytococci), fluoroquinolones, aminoglycosides, and others, in both bacteria.

2.
Biology (Basel) ; 12(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36979128

RESUMEN

The effect of C-type natriuretic peptide in a concentration closer to the normal level in human blood plasma was studied on the mono-species and dual-species biofilms of the skin commensal bacteria Cutibacterium acnes HL043PA2 and Staphylococcus epidermidis ATCC14990. Despite the marginal effect of the hormone on cutibacteria in mono-species biofilms, the presence of staphylococci in the community resulted in a global shift of the CNP effect, which appeared to increase the competitive properties of C. acnes, its proliferation and the metabolic activity of the community. S. epidermidis was mostly inhibited in the presence of CNP. Both bacteria had a significant impact on the gene expression levels revealed by RNA-seq. CNP did not affect the gene expression levels in mono-species cutibacterial biofilms; however, in the presence of staphylococci, five genes were differentially expressed in the presence of the hormone, including two ribosomal proteins and metal ABC transporter permease. In staphylococci, the Na-translocating system protein MpsB NADH-quinone oxidoreductase subunit L was downregulated in the dual-species biofilms in the presence of CNP, while in mono-species biofilms, two proteins of unknown function were downregulated. Hypothetically, at least one of the CNP mechanisms of action is via the competition for zinc, at least on cutibacteria.

3.
Front Microbiol ; 13: 1003942, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204611

RESUMEN

The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10-9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.

4.
Carbohydr Res ; 506: 108356, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34087653

RESUMEN

Glycopolymers of two types were isolated from the cell wall of Micrococcus luteus C01 by stepwise extraction with cold and hot 10% aq CCl3CO2H. The following structures of the glycopolymers were established by compositional analysis and 1D and 2D NMR spectroscopy: where L-Glu indicates glutamic acid.


Asunto(s)
Micrococcus luteus , Pared Celular
5.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35012129

RESUMEN

During radical polymerization of novel biocidal methacrylate guanidine monomers, a cyclic byproduct was discovered and identified as 2-imino-5-methyltetrahydropyrimidin-4(1H)-one (THP). Its methacrylate salt (MTHP) was synthesized and characterized via 1H and 13C NMR and pyrolysis chromatography. Synthesis conditions of both THP and MTHP were optimized to high yields, and both MTHP homopolymerization (in aqua) and copolymerization with diallyldimethylammonium chloride (in aqua in salt form) were successfully carried out with middle to high yields, providing a promising platform for potential tailored biocide polymers.

6.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582447

RESUMEN

Kytococcus schroeteri strain H01 was isolated from the skin of a healthy volunteer who underwent erythromycin treatment for a skin disorder 1 year prior. The draft genome consists of 2.38 Mb, a G+C content of 73.06%, and 2,221 protein coding sequences. This is the first genome characterization of a K. schroeteri strain isolated from human skin.

7.
Front Microbiol ; 10: 1284, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293526

RESUMEN

In skin, Cutibacterium acnes (former Propionibacterium acnes) can behave as an opportunistic pathogen, depending on the strain and environmental conditions. Acneic strains of C. acnes form biofilms inside skin-gland hollows, inducing inflammation and skin disorders. The essential exogenous products of C. acnes accumulate in the extracellular matrix of the biofilm, conferring essential bacterial functions to this structure. However, little is known about the actual composition of the biofilm matrix of C. acnes. Here, we developed a new technique for the extraction of the biofilm matrix of Gram-positive bacteria without the use of chemical or enzymatic digestion, known to be a source of artifacts. Our method is based on the physical separation of the cells and matrix of sonicated biofilms by ultracentrifugation through a CsCl gradient. Biofilms were grown on the surface of cellulose acetate filters, and the biomass was collected without contamination by the growth medium. The biofilm matrix of the acneic C. acnes RT5 strain appears to consist mainly of polysaccharides. The following is the ratio of the main matrix components: 62.6% polysaccharides, 9.6% proteins, 4.0% DNA, and 23.8% other compounds (porphyrins precursors and other). The chemical structure of the major polysaccharide was determined using a nuclear magnetic resonance technique, the formula being →6)-α-D-Galp-(1→4)-ß-D-ManpNAc3NAcA-(1→6)-α-D-Glcp-(1→4)-ß-D-ManpNAc3NAcA-(1→3)-ß-GalpNAc-(1→. We detected 447 proteins in the matrix, of which the most abundant were the chaperonin GroL, the elongation factors EF-Tu and EF-G, several enzymes of glycolysis, and proteins of unknown function. The matrix also contained more than 20 hydrolases of various substrata, pathogenicity factors, and many intracellular proteins and enzymes. We also performed surface-enhanced Raman spectroscopy analysis of the C. acnes RT5 matrix for the first time, providing the surface-enhanced Raman scattering (SERS) profiles of the C. acnes RT5 biofilm matrix and biofilm biomass. The difference between the matrix and biofilm biomass spectra showed successful matrix extraction rather than simply the presence of cell debris after sonication. These data show the complexity of the biofilm matrix composition and should be essential for the development of new anti-C. acnes biofilms and potential antibiofilm drugs.

8.
Carbohydr Res ; 404: 93-7, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25665785

RESUMEN

O-Specific polysaccharides were obtained from the lipopolysaccharides isolated from the planktonic and biofilm cultures of Pseudomonas chlororaphis 449 and studied by composition analysis and 1D and 2D (1)H and (13)C NMR spectroscopy. The following structure was established: -->4)-α-D-GalpNAc6Ac-(1-->3)-ß-D-QuipNAc-(1-->6)-α-D-GlcpNAc-(1-->ß-D-GlcpNAc-(1-->3) where the degree of non-stoichiometric 6-O-acetylation of GalNAc is ∼ 60% in the planktonic form or ∼ 10% in biofilm.


Asunto(s)
Antígenos O/química , Polisacáridos Bacterianos/química , Pseudomonas/fisiología , Biopelículas/crecimiento & desarrollo , Secuencia de Carbohidratos , Plancton/crecimiento & desarrollo , Espectroscopía de Protones por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA