Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Arh Hig Rada Toksikol ; 75(2): 102-109, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963144

RESUMEN

COVID-19 can cause a range of complications, including cardiovascular, renal, and/or respiratory insufficiencies, yet little is known of its potential effects in persons exposed to toxic metals. The aim of this study was to answer this question with in silico toxicogenomic methods that can provide molecular insights into COVID-19 complications owed to exposure to arsenic, cadmium, lead, mercury, nickel, and chromium. For this purpose we relied on the Comparative Toxicogenomic Database (CTD), GeneMANIA, and ToppGene Suite portal and identified a set of five common genes (IL1B, CXCL8, IL6, IL10, TNF) for the six metals and COVID-19, all of which code for pro-inflammatory and anti-inflammatory cytokines. The list was expanded with additional 20 related genes. Physical interactions are the most common between the genes affected by the six metals (77.64 %), while the dominant interaction between the genes affected by each metal separately is co-expression (As 56.35 %, Cd 64.07 %, Pb 71.5 %, Hg 81.91 %, Ni 64.28 %, Cr 88.51 %). Biological processes, molecular functions, and pathways in which these 25 genes participate are closely related to cytokines and cytokine storm implicated in the development of COVID-19 complications. In other words, our findings confirm that exposure to toxic metals, alone or in combinations, might escalate COVID-19 severity.


Asunto(s)
COVID-19 , Cadmio , Mercurio , Humanos , Cadmio/toxicidad , Mercurio/toxicidad , Plomo/toxicidad , Simulación por Computador , SARS-CoV-2 , Arsénico/toxicidad , Níquel/toxicidad , Metales Pesados/toxicidad , Cromo/toxicidad , Citocinas , Interleucina-1beta/genética , Interleucina-8/genética , Toxicogenética , Interleucina-6/genética , Interleucina-10/genética , Factor de Necrosis Tumoral alfa/genética
2.
Sci Total Environ ; 930: 172608, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38653421

RESUMEN

The effect of the lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) mixture (MIX) on hematotoxicity development was investigated trough combined approach. In vivo subacute study (28 days) was performed on rats (5 per group): a control group and five groups orally exposed to increasing metal(loid) mixture doses, MIX 1- MIX 5 (mg/kg bw./day) (Pb: 0.003, 0.01, 0.1, 0.3, 1; Cd: 0.01, 0.03, 0.3, 0.9, 3; Hg: 0.0002, 0.0006, 0.006, 0.018, 0.06; As: 0.002, 0.006, 0.06, 0.18, 0.6). Blood was taken for analysis of hematological parameters and serum iron (Fe) analysis. MIX treatment increased thrombocyte/platelet count and MCHC and decreased Hb, HCT, MCV and MCH values compared to control, indicating the development of anemia and thrombocytosis. BMDIs with the narrowest width were identified for MCH [pg] (6.030E-03 - 1.287E-01 mg Pb/kg bw./day; 2.010E-02 - 4.290E-01 mg Cd/kg bw./day; 4.020E-04 - 8.580E-03 mg Hg/kg bw./day; 4.020E-03 - 8.580E-02 mg As/kg bw./day). In silico analysis showed target genes connected with MIX and the development of: anemia - ACHE, GSR, PARP1, TNF; thrombocytosis - JAK2, CALR, MPL, THPO; hematological diseases - FAS and ALAD. The main extracted pathways for anemia were related to apoptosis and oxidative stress; for thrombocytosis were signaling pathways of Jak-STAT and TPO. Changes in miRNAs and transcription factors enabled the mode of action (MoA) development based on the obtained results, contributing to mechanistic understanding and hematological risk related to MIX exposure.


Asunto(s)
Arsénico , Cadmio , Plomo , Mercurio , Animales , Ratas , Plomo/toxicidad , Cadmio/toxicidad , Mercurio/toxicidad , Arsénico/toxicidad , Simulación por Computador , Masculino , Contaminantes Ambientales/toxicidad
3.
Cancers (Basel) ; 16(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339275

RESUMEN

Cancer is a leading cause of death worldwide, for which finding the optimal therapy remains an ongoing challenge. Drug resistance, toxic side effects, and a lack of specificity pose significant difficulties in traditional cancer treatments, leading to suboptimal clinical outcomes and high mortality rates among cancer patients. The need for alternative therapies is crucial, especially for those resistant to conventional methods like chemotherapy and radiotherapy or for patients where surgery is not possible. Over the past decade, a novel approach known as bacteria-mediated cancer therapy has emerged, offering potential solutions to the limitations of conventional treatments. An increasing number of in vitro and in vivo studies suggest that the subtype of highly virulent Pseudomonas aeruginosa bacterium called Pseudomonas aeruginosa mannose-sensitive-hemagglutinin (PA-MSHA) can successfully inhibit the progression of various cancer types, such as breast, lung, and bladder cancer, as well as hepatocellular carcinoma. PA-MSHA inhibits the growth and proliferation of tumor cells and induces their apoptosis. Proposed mechanisms of action include cell-cycle arrest and activation of pro-apoptotic pathways regulated by caspase-9 and caspase-3. Moreover, clinical studies have shown that PA-MSHA improved the effectiveness of chemotherapy and promoted the activation of the immune response in cancer patients without causing severe side effects. Reported adverse reactions were fever, skin irritation, and pain, attributed to the overactivation of the immune response. This review aims to summarize the current knowledge obtained from in vitro, in vivo, and clinical studies available at PubMed, Google Scholar, and ClinicalTrials.gov regarding the use of PA-MSHA in cancer treatment in order to further elucidate its pharmacological and toxicological properties.

4.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38397745

RESUMEN

Sulforaphane (SFN), which is a hydrolysis product from glucoraphanin, a compound found in cruciferous vegetables, has been studied for its potential health benefits, particularly in disease prevention and treatment. SFN has proven to be effective in combating different types of cancer by inhibiting the proliferation of tumors and triggering apoptosis. This dual action has been demonstrated to result in a reduction in tumor size and an enhancement of survival rates in animal models. SFN has also shown antidiabetic and anti-obesity effects, improving glucose tolerance and reducing fat accumulation. SFN's ability to activate Nrf2, a transcription factor regulating oxidative stress and inflammation in cells, is a primary mechanism behind its anticancerogenic and antidiabetic effects. Its antioxidant, anti-inflammatory, and anti-apoptotic properties are also suggested to provide beneficial effects against neurodegenerative diseases. The potential health benefits of SFN have led to increased interest in its use as a dietary supplement or adjunct to chemotherapy, but there are insufficient data on its efficacy and optimal doses, as well as its safety. This review aims to present and discuss SFN's potential in treating various diseases, such as cancer, diabetes, cardiovascular diseases, obesity, and neurodegenerative diseases, focusing on its mechanisms of action. It also summarizes studies on the pharmacological and toxicological potential of SFN in in vitro and animal models and explores its protective role against toxic compounds through in vitro and animal studies.

5.
Sci Total Environ ; 917: 170437, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38290670

RESUMEN

The constant exposure of humans to a mixture of low doses of toxic substances, emerging from the daily emission of toxic dust containing various metals and organic compounds in electrical and electronic waste (e-waste) recycling areas, poses potential harmful effects on health and the environment. While individually recognized as endocrine disruptors affecting hormonal balance, the combined impact of these toxic substances in a mixture remains insufficiently explored, particularly in relation to reproductive health. Thus, the aim of this in silico analysis was to: (i) assess the relationship between the exposure to a mixture of DBDE, DBDPE, TBBPA, Pb, Cd and Ni and development of male and female reproductive system disorders; and (ii) demonstrate the ability of in silico toxicogenomic tools in revealing the potential molecular mechanisms involved in the mixture toxicity. As the main data-mining tool, Comparative Toxicogenomics Database (CTD) was used, along with the ToppGene Suite portal and GeneMANIA online server. Our analysis identified 5 genes common to all the investigated substances and linked to reproductive system disorders. Notably, the most prominent interactions among these genes were physical interactions (77.64 %). Pathway enrichment analysis identified oxidative stress response as the central disrupted molecular pathway linked to reproductive pathology in the investigated mixture, while our chemical-phenotype CTD analysis uncovered additional affected pathways - apoptosis, hormonal regulation, and developmental functions. These findings highlight an increased risk of reproductive system disorders associated with the exposure to the investigated mixture of toxic substances in electronic waste recycling areas, emphasizing the urgent need for attention to address this environmental health concern. Hence, future laboratory studies should prioritize investigating the specific genes and common mechanisms identified in this study.


Asunto(s)
Residuos Electrónicos , Disruptores Endocrinos , Masculino , Femenino , Humanos , Polvo/análisis , Residuos Electrónicos/análisis , Disruptores Endocrinos/toxicidad , Metales , Reciclaje
6.
Hell J Nucl Med ; 26(2): 99-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37527045

RESUMEN

OBJECTIVE: Squamous cell carcinomas (SCC) are a number of different types of cancer that result from squamous cells. These cells form on the surface of the skin, on the lining of the respiratory and digestive tracts etc. To evaluate SCC and frequencies of their localizations based on the findings of fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). SUBJECTS AND METHODS: This study included 343 consecutive patients with SCC who were sent for the 18F-FDG PET/CT. Inclusion criteria were: Pathohistologically verified SCC; absence of malignancy of any other localization, as well as absence of infection; and glycemia ≤11mmol/L. RESULTS: The pathological findings on 18F-FDG PET/CT were present in 86% of patients. There was statistically significant difference in the finding of 18F-FDG PET/CT in relation to gender (P>0.006). The disease was more often present in women. The most common localizations of disease were: lungs (70%), vagina/cervix (18%), gastrointestinal tract (18%), head and neck (5%). Highest maximum standardized uptake value (SUVmax) levels were seen in the lungs 11.78±8.38, vagina/cervix 11.21±8.10, and head and neck area 6.32±3.96. CONCLUSION: Fluorine-18-FDG PET/CT can be informative in evaluation of SCC. Disease is present usually in women, although it is the same pathohistological type of disease, different organs accumulate this radioactive contrast differently.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Radiofármacos , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA