Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Dermatol ; 32(6): 787-798, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36789506

RESUMEN

Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited disorder caused by mutations in the ATP2C1 gene that encodes an adenosine triphosphate (ATP)-powered calcium channel pump. HHD is characterized by impaired epidermal cell-to-cell adhesion and defective keratinocyte growth/differentiation. The mechanism by which mutant ATP2C1 causes HHD is unknown and current treatments for affected individuals do not address the underlying defects and are ineffective. Notch signalling is a direct determinant of keratinocyte growth and differentiation. We found that loss of ATP2C1 leads to impaired Notch1 signalling, thus deregulation of the Notch signalling response is therefore likely to contribute to HHD manifestation. NOTCH1 is a transmembrane receptor and upon ligand binding, the intracellular domain (NICD) translocates to the nucleus activating its target genes. In the context of HHD, we found that loss of ATP2C1 function promotes upregulation of the active NOTCH1 protein (NICD-Val1744). Here, deeply exploring this aspect, we observed that NOTCH1 activation is not associated with the transcriptional enhancement of its targets. Moreover, in agreement with these results, we found a cytoplasmic localization of NICD-Val1744. We have also observed that ATP2C1-loss is associated with the degradation of NICD-Val1744 through the lysosomal/proteasome pathway. These results show that ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded by the cell membrane. The deregulation of this phenomenon, finely regulated in physiological conditions, could in HHD lead to the deregulation of NOTCH1 with alteration of skin homeostasis and disease manifestation.


Asunto(s)
Pénfigo Familiar Benigno , Humanos , Pénfigo Familiar Benigno/genética , Pénfigo Familiar Benigno/metabolismo , Piel/metabolismo , Queratinocitos/metabolismo , Mutación , Epidermis/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
2.
Cell Death Discov ; 7(1): 75, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846306

RESUMEN

Both CDKN1A (p21 Waf1/Cip1) and Apoptosis signal-regulating kinase 1 (ASK1) play important roles in tumorigenesis. The role of p21 Waf1/Cip1 in attenuating ASK1-induced apoptosis by various stress conditions is well established. However, how ASK1 and p21 Waf1/Cip1 functionally interact during tumorigenesis is still unclear. To address this aspect, we crossed ASK1 knockout (ASK1KO) mice with p21 Waf1/Cip1 knockout (p21KO) mice to compare single and double-mutant mice. We observed that deletion of p21 Waf1/Cip1 leads to increased keratinocyte proliferation but also increased cell death. This is mechanistically linked to the ASK1 axis-induced apoptosis, including p38 and PARP. Indeed, deletion of ASK1 does not alter the proliferation but decreases the apoptosis of p21KO keratinocytes. To analyze as this interaction might affect skin carcinogenesis, we investigated the response of ASK1KO and p21KO mice to DMBA/TPA-induced tumorigenesis. Here we show that while endogenous ASK1 is dispensable for skin homeostasis, ASK1KO mice are resistant to DMBA/TPA-induced tumorigenesis. However, we found that epidermis lacking both p21 and ASK1 reacquires increased sensitivity to DMBA/TPA-induced tumorigenesis. We demonstrate that apoptosis and cell-cycle progression in p21KO keratinocytes are uncoupled in the absence of ASK1. These data support the model that a critical event ensuring the balance between cell death, cell-cycle arrest, and successful divisions in keratinocytes during stress conditions is the p21-dependent ASK1 inactivation.

3.
Molecules ; 24(24)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817098

RESUMEN

Hailey-Hailey disease (HHD) is a rare, chronic and recurrent blistering disorder, characterized by erosions occurring primarily in intertriginous regions and histologically by suprabasal acantholysis. Mutation of the Golgi Ca2+-ATPase ATP2C1 has been identified as having a causative role in Hailey-Hailey disease. HHD-derived keratinocytes have increased oxidative-stress that is associated with impaired proliferation and differentiation. Additionally, HHD is characterized by skin lesions that do not heal and by recurrent skin infections, indicating that HHD keratinocytes might not respond well to challenges such as wounding or infection. Hypochlorous acid has been demonstrated in vitro and in vivo to possess properties that rescue both oxidative stress and altered wound repair process. Thus, we investigated the potential effects of a stabilized form of hypochlorous acid (APR-TD012) in an in vitro model of HHD. We found that treatment of ATP2C1-defective keratinocytes with APR-TD012 contributed to upregulation of Nrf2 (nuclear factor (erythroid-derived 2)-like 2). Additionally, APR TD012-treatment restored the defective proliferative capability of siATP2C1-treated keratinocytes. We also found that the APR-TD012 treatment might support wound healing process, due to its ability to modulate the expression of wound healing associated cytokines. These observations suggested that the APR-TD012 might be a potential therapeutic agent for HHD-lesions.


Asunto(s)
Ácidos/química , Ácido Hipocloroso/uso terapéutico , Soluciones Hipotónicas/uso terapéutico , Pénfigo Familiar Benigno/tratamiento farmacológico , Antioxidantes/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Hipocloroso/farmacología , Soluciones Hipotónicas/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Pénfigo Familiar Benigno/genética , Pénfigo Familiar Benigno/patología , Especies Reactivas de Oxígeno/metabolismo , Soluciones , Cicatrización de Heridas/efectos de los fármacos
4.
J Biol Chem ; 294(47): 17941-17950, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597699

RESUMEN

Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor suppressor and oncogenic components. To identify regulators that might control this dual activity of NOTCH1, we screened a chemical library targeting kinases and identified Polo-like kinase 1 (PLK1) as one of the kinases involved in arsenite-induced NOTCH1 down-modulation. As PLK1 activity drives mitotic entry but also is inhibited after DNA damage, we investigated the PLK1-NOTCH1 interplay in the G2 phase of the cell cycle and in response to DNA damage. Here, we found that PLK1 regulates NOTCH1 expression at G2/M transition. However, when cells in G2 phase are challenged with DNA damage, PLK1 is inhibited to prevent entry into mitosis. Interestingly, we found that the interaction between NOTCH1 and PLK1 is functionally important during the DNA damage response, as we found that whereas PLK1 activity is inhibited, NOTCH1 expression is maintained during DNA damage response. During genotoxic stress, cellular transformation requires that promitotic activity must override DNA damage checkpoint signaling to drive proliferation. Interestingly, we found that arsenite-induced genotoxic stress causes a PLK1-dependent signaling response that antagonizes the involvement of NOTCH1 in the DNA damage checkpoint. Taken together, our data provide evidence that Notch signaling is altered but not abolished in SCC cells. Thus, it is also important to recognize that Notch plasticity might be modulated and could represent a key determinant to switch on/off either the oncogenic or tumor suppressor function of Notch signaling in a single type of tumor.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptor Notch1/metabolismo , Apoptosis/efectos de los fármacos , Arsenitos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fase G2/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Mitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Especificidad por Sustrato/efectos de los fármacos , Quinasa Tipo Polo 1
5.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832234

RESUMEN

DNA is an entity shielded by mechanisms that maintain genomic stability and are essential for living cells; however, DNA is constantly subject to assaults from the environment throughout the cellular life span, making the genome susceptible to mutation and irreparable damage. Cells are prepared to mend such events through cell death as an extrema ratio to solve those threats from a multicellular perspective. However, in cells under various stress conditions, checkpoint mechanisms are activated to allow cells to have enough time to repair the damaged DNA. In yeast, entry into the cell cycle when damage is not completely repaired represents an adaptive mechanism to cope with stressful conditions. In multicellular organisms, entry into cell cycle with damaged DNA is strictly forbidden. However, in cancer development, individual cells undergo checkpoint adaptation, in which most cells die, but some survive acquiring advantageous mutations and selfishly evolve a conflictual behavior. In this review, we focus on how, in cancer development, cells rely on checkpoint adaptation to escape DNA stress and ultimately to cell death.


Asunto(s)
Daño del ADN , Puntos de Control del Ciclo Celular , Reparación del ADN , Levaduras/genética
6.
Int J Mol Sci ; 19(6)2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925776

RESUMEN

The term orthodisease defines human disorders in which the pathogenic gene has orthologs in model organism genomes. Yeasts have been instrumental for gaining insights into the molecular basis of many human disorders, particularly those resulting from impaired cellular metabolism. We and others have used yeasts as a model system to study the molecular basis of Hailey-Hailey disease (HHD), a human blistering skin disorder caused by haploinsufficiency of the gene ATP2C1 the orthologous of the yeast gene PMR1. We observed that K. lactis cells defective for PMR1 gene share several biological similarities with HHD derived keratinocytes. Based on the conservation of ATP2C1/PMR1 function from yeast to human, here we used a yeast-based assay to screen for molecules able to influence the pleiotropy associated with PMR1 deletion. We identified six compounds, Kaempferol, Indirubin, Lappaconite, Cyclocytidine, Azomycin and Nalidixic Acid that induced different major shape phenotypes in K. lactis. These include mitochondrial and the cell-wall morphology-related phenotypes. Interestingly, a secondary assay in mammalian cells confirmed activity for Kaempferol. Indeed, this compound was also active on human keratinocytes depleted of ATP2C1 function by siRNA-treatment used as an in-vitro model of HHD. We found that Kaempferol was a potent NRF2 regulator, strongly inducing its expression and its downstream target NQO1. In addition, Kaempferol could decrease oxidative stress of ATP2C1 defective keratinocytes, characterized by reduced NRF2-expression. Our results indicated that the activation of these pathways might provide protection to the HHD-skin cells. As oxidative stress plays pivotal roles in promoting the skin lesions of Hailey-Hailey, the NRF2 pathway could be a viable therapeutic target for HHD.


Asunto(s)
Productos Biológicos/farmacología , Quempferoles/farmacología , Kluyveromyces/efectos de los fármacos , Pénfigo Familiar Benigno/terapia , Productos Biológicos/uso terapéutico , Calcio/metabolismo , ATPasas Transportadoras de Calcio/genética , Línea Celular , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Pleiotropía Genética , Humanos , Quempferoles/uso terapéutico , Queratinocitos/efectos de los fármacos , Kluyveromyces/genética , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pénfigo Familiar Benigno/genética , Cultivo Primario de Células
8.
Sci Rep ; 6: 31567, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27528123

RESUMEN

Mutation of the Golgi Ca(2+)-ATPase ATP2C1 is associated with deregulated calcium homeostasis and altered skin function. ATP2C1 mutations have been identified as having a causative role in Hailey-Hailey disease, an autosomal-dominant skin disorder. Here, we identified ATP2C1 as a crucial regulator of epidermal homeostasis through the regulation of oxidative stress. Upon ATP2C1 inactivation, oxidative stress and Notch1 activation were increased in cultured human keratinocytes. Using RNA-seq experiments, we found that the DNA damage response (DDR) was consistently down-regulated in keratinocytes derived from the lesions of patients with Hailey-Hailey disease. Although oxidative stress activates the DDR, ATP2C1 inactivation down-regulates DDR gene expression. We showed that the DDR response was a major target of oxidative stress-induced Notch1 activation. Here, we show that this activation is functionally important because early Notch1 activation in keratinocytes induces keratinocyte differentiation and represses the DDR. These results indicate that an ATP2C1/NOTCH1 axis might be critical for keratinocyte function and cutaneous homeostasis, suggesting a plausible model for the pathological features of Hailey-Hailey disease.


Asunto(s)
ATPasas Transportadoras de Calcio/genética , Daño del ADN , Epidermis/metabolismo , Homeostasis , Pénfigo Familiar Benigno/patología , Receptor Notch1/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Diferenciación Celular , Epidermis/patología , Expresión Génica , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Estrés Oxidativo , Pénfigo Familiar Benigno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA