Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
BMC Med Imaging ; 24(1): 244, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285364

RESUMEN

PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1(IDH-1) mutation and Ki-67 expression in glioma. METHODS: The DWI, DCE and APTW images of 309 patients with glioma confirmed by pathology were retrospectively analyzed and divided into the IDH-1 group (IDH-1(+) group and IDH-1(-) group) and Ki-67 group (low expression group (Ki-67 ≤ 10%) and high expression group (Ki-67 > 10%)). All cases were divided into the training set, and validation set according to the ratio of 7:3. The training set was used to select features and establish machine learning models. The SVM model was established with the data after feature selection. Four single sequence models and one combined model were established in IDH-1 group and Ki-67 group. The receiver operator characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. Validation set data was used for further validation. RESULTS: Both in the IDH-1 group and Ki-67 group, the combined model had better predictive efficiency than single sequence model, although the single sequence model had a better predictive efficiency. In the Ki-67 group, the combined model was built from six selected radiomics features, and the AUC were 0.965 and 0.931 in the training and validation sets, respectively. In the IDH-1 group, the combined model was built from four selected radiomics features, and the AUC were 0.997 and 0.967 in the training and validation sets, respectively. CONCLUSION: The radiomics model established by DWI, DCE and APTW images could be used to detect IDH-1 mutation and Ki-67 expression in glioma patients before surgery. The prediction performance of the radiomics model based on the combination sequence was better than that of the single sequence model.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Antígeno Ki-67 , Mutación , Máquina de Vectores de Soporte , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Persona de Mediana Edad , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Masculino , Estudios Retrospectivos , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Multimodal , Adulto Joven , Imagen por Resonancia Magnética/métodos , Curva ROC , Medios de Contraste
2.
Front Pharmacol ; 15: 1457780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239657

RESUMEN

Introduction: The prevalence of male infertility has been increasing globally, necessitating the search for safe and nontoxic active compounds to alleviate reproductive dysfunction. Although the precise mechanism remains unknown, Cynomorium songaricum Rupr. (CS) extract has protective effects on the reproductive system. The effect of C. songaricum Rupr. flavonoids (CSF) on reproductive injury and testicular mesenchymal stem cell viability in male mice and TM3 cells was investigated. Methods: We explored the possible association between these effects and the testosterone (T) synthesis pathway. Mice were administered cyclophosphamide to induce reproductive damage, followed by CSF administration. Body mass and organ index were recorded. Pathological changes in T and the epididymis were observed using hematoxylin-eosin staining. ELISA measured the serum levels of T, luteinizing hormone (LH), gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and estradiol (E2) in mice. Fructose and zinc ion levels in the seminal plasma were measured. TM3 cells were treated with Bisphenol A (BPA) and different concentrations of CSF, followed by proliferative evaluations using the CCK-8 assay and T and LH level assessments using ELISA. Furthermore, the expression of steroidogenic enzyme genes and proteins was investigated using western blotting and RT-PCR. Results: CSF exhibited a notable reduction in reproductive damage and improved pathological changes in testicular and epididymal tissues. CSF group demonstrated substantially higher levels of seminal plasma fructose and zinc ions; markedly elevated serum levels of T, LH, GnRH, and FSH; and lower levels of E2 than those of the model group. Intracellular T content and secretion of T and LH increase with CSF while effectively mitigating BPA-induced damage to TM3 cells. CSF group exhibited substantially higher gene and protein expression of steroidogenic enzymes than those of the model group, both in vivo and in vitro. CSF ameliorates reproductive impairment by enhancing the expression of pivotal enzymes involved in synthesizing T. Discussion: CSF ameliorates cyclophosphamide-induced reproductive impairment and bisphenol A-induced TM3 cell damage in mice by regulating sex hormone levels in the Hypothalamic-Pituitary-Gonadal Axis (HPG axis) and upregulating the expression of steroidogenic enzymes. Therefore, CS is a potential treatment for male reproductive impairment.

3.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274908

RESUMEN

Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1ß (IL-ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-ß/Smad pathways.


Asunto(s)
Cuernos de Venado , Células HaCaT , Ratones Endogámicos ICR , Estrés Oxidativo , Especies Reactivas de Oxígeno , Piel , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Animales , Humanos , Cuernos de Venado/química , Ratones , Estrés Oxidativo/efectos de los fármacos , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/patología , Piel/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Colágeno Tipo I/metabolismo , Ciervos , Ácido Hialurónico/farmacología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
J Environ Manage ; 369: 122275, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217908

RESUMEN

The complex characteristics of volatility and non-linearity of carbon price pose a serious challenge to accurately predict carbon price. Therefore, this study proposes a new hybrid model for multivariate carbon price forecasting, including feature selection, deep learning, intelligent optimization algorithms, model combination and evaluation indicators. First, this study collects and organizes the historical carbon price series of Hubei and Shanghai as well as the influencing factors in five dimensions including structured and unstructured data, totaling twenty variables. Second, data dimensionality reduction is performed and input variables are obtained using the least absolute shrinkage and selection operator, followed by the introduction of nine advanced deep learning models to predict carbon price and compare the prediction effects. Then, through the combination of models, three models with the best performance are combined with Pelican optimization algorithm to construct a hybrid forecasting model. Finally, the experimental results show that the developed forecasting model outperforms other comparation models in terms of prediction accuracy, stability and statistical hypothesis testing, and exhibits excellent prediction performance. Furthermore, this study also applies the developed model to European carbon market price prediction and uses the Hubei carbon market as an example for quantitative trading simulation, and the empirical results further verify its robust prediction performance and investment application value. In conclusion, the proposed hybrid prediction model can not only provide high-precision carbon market price prediction for the government and corporate decision makers, but also help investors optimize their trading strategies and improve their returns.


Asunto(s)
Carbono , Predicción , Algoritmos , Modelos Teóricos , China , Comercio
5.
Adv Mater ; : e2408192, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155803

RESUMEN

Mechanochromic light control technology that can dynamically regulate solar irradiation is recognized as one of the leading candidates for energy-saving windows. However, the lack of spectrally selective modulation ability still hinders its application for different scenarios or individual needs. Here, inspired by the generation of structure color and color change of living organisms, a simple layer-by-layer assembly approach toward large-area fabricating mechanically responsive film for visible and near-infrared multiwavelength spectral modulation smart windows is reported here. The assembled SiO2 nanoparticles and W18O49 nanowires enable the film with an optical modulation rate of up to 42.4% at the wavelength of 550 nm and 18.4% for the near-infrared region, separately, and the typical composite film under 50% stretching shows ≈41.6% modulation rate at the wavelength of 550 nm with NIR modulation rate less than 2.7%. More importantly, the introduction of the multilayer assembly structure not only optimizes the film's optical modulation but also enables the film with high stability during 100 000 stretching cycles. A cooling effect of 21.3 and 6.9 °C for the blackbody and air inside a model house in the real environmental application is achieved. This approach provides theoretical and technical support for the new mechanochromic energy-saving windows.

6.
J Sci Food Agric ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189446

RESUMEN

BACKGROUND: Deer oil (DO), a byproduct of deer meat processing, possesses high nutritional value. This study aims to evaluate the protective effects of DO on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and to explore its potential mechanisms of action. RESULTS: DO was found to inhibit weight loss and colon shortening in colitis mice, significantly reduce disease activity index scores, and notably enhance the levels of tight junction proteins in colon tissues, thus improving intestinal barrier function. ELISA results indicated that DO markedly alleviated the mice's oxidative stress and inflammatory responses. Western blot analysis further demonstrated that DO significantly inhibited the phosphorylation of NF-κB while up-regulating the expression levels of Nrf2 and HO-1 proteins. Additionally, DO increased the abundance of beneficial bacteria such as Odoribacter, Blautia, and Muribaculum, reduced the abundance of harmful bacteria such as Bacteroides, Helicobacter, and Escherichia-Shigella, and promoted the production of short-chain fatty acids. CONCLUSION: Our study provides the first evidence that DO can effectively improve DSS-induced UC in mice. The underlying mechanisms may involve maintaining intestinal barrier function, inhibiting inflammation, alleviating oxidative stress, and modulation of gut microbiota. These findings offer valuable insights for developing DO as an adjunct treatment for UC and as a functional food. © 2024 Society of Chemical Industry.

7.
Biomolecules ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199295

RESUMEN

Due to the limited supply of autologous bone grafts, there is a need to develop more bone matrix materials to repair bone defects. Xenograft bone is expected to be used for clinical treatment due to its exact structural similarity to natural bone and its high biocompatibility. In this study, decellularized antler cancellous bone matrix (DACB) was first prepared, and then the extent of decellularization of DACB was verified by histological staining, which demonstrated that it retained the extracellular matrix (ECM). The bioactivity of DACB was assessed using C3H10T1/2 cells, revealing that DACB enhanced cell proliferation and facilitated cell adhesion and osteogenic differentiation. When evaluated by implanting DACB into nude mice, there were no signs of necrosis or inflammation in the epidermal tissues. The bone repair effect of DACB was verified in vivo using sika deer during the antler growth period as an animal model, and the molecular mechanisms of bone repair were further evaluated by transcriptomic analysis of the regenerated tissues. Our findings suggest that the low immunogenicity of DACB enhances the production of bone extracellular matrix components, leading to effective osseointegration between bone and DACB. This study provides a new reference for solving bone defects.


Asunto(s)
Cuernos de Venado , Hueso Esponjoso , Ciervos , Ratones Desnudos , Osteogénesis , Andamios del Tejido , Animales , Cuernos de Venado/química , Andamios del Tejido/química , Ratones , Proliferación Celular , Diferenciación Celular , Matriz Extracelular Descelularizada/química , Ingeniería de Tejidos/métodos , Matriz Extracelular/metabolismo , Regeneración Ósea , Línea Celular , Adhesión Celular
8.
Nutrients ; 16(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203724

RESUMEN

The by-product of deer skin, which has mostly been used as a decorative material, is rich in collagen and amino acids that could bind to Ca2+. Therefore, the preparation process, stability, antioxidant activity and calcium transport capacity of deer skin collagen peptide calcium chelate (Ca-DSCP) were investigated. In addition, the structure of the new chelate was characterized. The preparation process of Ca-DSCP was optimized using one-way experiments and response surface methodology. The ideal conditions were pH 9, 48 °C, and a peptide-to-calcium mass ratio of 5:1. The chelation rate was (60.73 ± 1.54)%. Zeta potential, XRD, UV-vis and FTIR analyses yielded that deer skin collagen peptides (DSCP) underwent a chelating reaction with calcium ions to form new structures. The stability of Ca-DSCP and the fraction of bioavailability of calcium ions were determined using in vitro gastrointestinal digestion and a Caco-2 cell monolayer model. The results showed that fraction of bioavailability and stability of DSCP were improved by influencing the structural characterization. The antioxidant activities of DSCP and Ca-DSCP were evaluated by measuring relevant oxidative stress indicators, DPPH radical scavenging capacity and hydroxyl radical scavenging capacity. Finally, bioinformatics and molecular docking techniques were utilized to screen and study the antioxidant mechanism of DSCP.


Asunto(s)
Antioxidantes , Calcio , Colágeno , Ciervos , Digestión , Péptidos , Piel , Animales , Humanos , Antioxidantes/farmacología , Células CACO-2 , Colágeno/metabolismo , Calcio/metabolismo , Péptidos/farmacología , Péptidos/química , Piel/metabolismo , Simulación del Acoplamiento Molecular , Disponibilidad Biológica , Tracto Gastrointestinal/metabolismo , Quelantes/farmacología
9.
J Ethnopharmacol ; 337(Pt 1): 118757, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216771

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Spermatogenic Pill (SP) is a commonly used clinical preparation in the Third Clinical Hospital of Changchun University of Traditional Chinese Medicine. Has accumulated a good reputation for more than a decade. However, because SP is a hospital clinical agent, it has received little extensive attention from researchers, which has led to a systematic lack of basic research on it. Therefore, it is impossible to determine whether there are safety hazards that may limit its widespread clinical application, and an in-depth toxicological evaluation of SP is essential and urgent. AIM OF THE STUDY: The aim of this study was to assess the safety of SP by conducting acute and subacute toxicity examinations. MATERIALS AND METHODS: Identify active compounds contained in SP by LC-MS, and determination of inorganic elements in SP using ICP-MS. The in vivo acute toxicity of SP was assessed over a duration of 14 days following administration at doses of 7.5, 15, or 30 g/kg. To evaluate subacute toxicity, mice were administered daily doses of SP (7.5, 15, or 30 g/kg) for a period of 28 days. After the treatment period, the animals were euthanized, and standard blood tests, liver and kidney function tests, as well as tests related to glycolipid metabolism, were performed. The principal organs of the mice were collected to calculate organ coefficients and undergo hematoxylin-eosin (HE) staining. RESULTS: LC-MS analysis showed that the active components of SP include Quercetin, Kaempferol, Beta-sitosterol, Stigmasterol, Diosbulbin B, Schizandrin, Naringenin, 2,3-hydroxycinnamic acid, L-proline, Histidine and Pluviatolide. The total amount of detected inorganic elements accounted for 3.0919% of SP. During the SP acute toxicity experiment, the groups that received the drug exhibited no signs of adverse reactions or poisoning symptoms. In subacute toxicity experiments, drug-treated mice showed overall favorable status, but the effects of continuous administration of the 30 g/kg group on body weight and food intake were reduced. An increase in the white marrow of spleen tissue after long-term administration of the drug treatment was also observed, suggesting that the drug can increase the maturation process and the number of mature lymphocytes in the spleen, and improve the lymphocyte immunity and humoral immunity function of the organism. Suggests that possibly this should be taken into account in clinical application. The routine blood examinations, as well as the assessments of liver and kidney functions, and the tests for glucose and lipid metabolism, did not reveal any notable toxic effects. CONCLUSION: SP contains more flavonoids, and terpenoid active ingredients, and is non-toxic in the body. This discovery not only strengthens the safety foundation of its clinical application, provides a solid scientific basis for the establishment of reasonable clinical dosage and the implementation of effective clinical toxicity monitoring, but also further lays a solid theoretical cornerstone for the subsequent clinical drug trials.

10.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062817

RESUMEN

Depression is one of the most common psychological disorders nowadays. Studies have shown that 20(S)-protopanaxatriol (PPT) can effectively improve depressive symptoms in mice. However, its mechanism needs to be further explored. In this study, we used an integrated approach combining network pharmacology and transcriptomics to explore the potential mechanisms of PPT for depression. First, the potential targets and pathways of PPT treatment of depression were screened through network pharmacology. Secondly, the BMKCloud platform was used to obtain brain tissue transcription data of chronic unpredictable mild stress (CUMS) model mice and screen PPT-altered differential expression genes (DEGs). Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed using network pharmacology and transcriptomics. Finally, the above results were verified by molecular docking, Western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we demonstrated that PPT improved depression-like behavior and brain histopathological changes in CUMS mice, downregulated nitric oxide (NO) and interleukin-6 (IL-6) levels, and elevated serum levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) after PPT treatment compared to the CUMS group. Eighty-seven potential targets and 350 DEGs were identified by network pharmacology and transcriptomics. Comprehensive analysis showed that transthyretin (TTR), klotho (KL), FOS, and the phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway were closely associated with the therapeutic effects of PPT. Molecular docking results showed that PPT had a high affinity for PI3K, AKT, TTR, KL, and FOS targets. Gene and protein level results showed that PPT could increase the expression of PI3K, phosphorylation of PI3K (p-PI3K), AKT, phosphorylation of AKT (p-AKT), TTR, and KL and inhibit the expression level of FOS in the brain tissue of depressed mice. Our data suggest that PPT may achieve the treatment of depression by inhibiting the expression of FOS, enhancing the expression of TTR and KL, and modulating the PI3K-AKT signaling pathway.


Asunto(s)
Depresión , Farmacología en Red , Sapogeninas , Transcriptoma , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Sapogeninas/farmacología , Transcriptoma/efectos de los fármacos , Masculino , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Perfilación de la Expresión Génica , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
11.
Front Mol Neurosci ; 17: 1419520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077756

RESUMEN

Nerve injuries significantly impact the quality of life for patients, with severe cases posing life-threatening risks. A comprehensive understanding of the pathophysiological mechanisms underlying nerve injury is crucial to the development of effective strategies to promote nerve regeneration. Circular RNAs (circRNAs), a recently characterized class of RNAs distinguished by their covalently closed-loop structures, have been shown to play an important role in various biological processes. Numerous studies have highlighted the pivotal role of circRNAs in nerve regeneration, identifying them as potential therapeutic targets. This review aims to succinctly outline the latest advances in the role of circRNAs related to nerve injury repair and the underlying mechanisms, including peripheral nerve injury, traumatic brain injury, spinal cord injury, and neuropathic pain. Finally, we discuss the potential applications of circRNAs in drug development and consider the potential directions for future research in this field to provide insights into circRNAs in nerve injury repair.

12.
Plant Cell Environ ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016637

RESUMEN

Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.

13.
Shanghai Kou Qiang Yi Xue ; 33(2): 205-210, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-39005101

RESUMEN

PURPOSE: To investigate the relationship between preoperative systemic immune-inflammation index (SII) and relapse-free survival (RFS) after surgical resection of mucoepidermoid carcinoma(MEC). METHODS: The data of 135 patients with MEC who underwent surgical resection in the First Affiliated Hospital of Zhengzhou University from January 2016 to July 2019 were collected, and the receiver operating characteristic(ROC) curve was performed on the SII of patients. The optimal cut-off value was obtained by ROC analysis. Therefore, the patients' SII index was divided into high and low group, and survival analysis was performed by Kaplan-Meier method. Cox proportional regression model and least absolute shrinkage and selection operator (LASSO) were used to analyze the factors influencing prognosis, and a nomogram model was built to predict patients' relapse-free survival(RFS). Area under curve (AUC) and correction curve were used to evaluate the model and verify the consistency. RESULTS: Survival analysis showed that the RFS rate in low SII group was significantly higher than that in high SII group. Cox proportional hazard regression model showed high SII(HR=2.179, 95%CI: 1.072-4.426, P=0.031) and low tumor differentiation(HR=6.894, 95%CI: 2.770-17.158, P=0.000) and cervical lymph node metastasis (HR=2.091, 95%CI: 1.034-4.230, P=0.040) were significant predictors of poor RFS. CONCLUSIONS: The lower the preoperative SII, the better the prognosis of patients. The nomogram prognosis of MEC based on SII is effective.


Asunto(s)
Carcinoma Mucoepidermoide , Inflamación , Nomogramas , Modelos de Riesgos Proporcionales , Humanos , Carcinoma Mucoepidermoide/inmunología , Carcinoma Mucoepidermoide/patología , Carcinoma Mucoepidermoide/cirugía , Carcinoma Mucoepidermoide/mortalidad , Pronóstico , Inflamación/inmunología , Curva ROC , Estimación de Kaplan-Meier , Supervivencia sin Enfermedad , Femenino , Masculino
14.
Int J Biol Macromol ; 276(Pt 2): 133925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032904

RESUMEN

Phytopolysaccharides are a class of natural macromolecules with a range of biological activities. Ginseng, red ginseng, American ginseng, and Panax notoginseng are all members of the Araliaceae family. They are known to contain a variety of medicinal properties and are typically rich in a wide range of medicinal values. Polysaccharides represent is one of the principal active ingredients in the aforementioned plants. However, there is a paucity of detailed reports on the separation methods, structural characteristics and comparison of various pharmacological effects of these polysaccharides. This paper presents a review of the latest research reports on ginseng, red ginseng, American ginseng and ginseng polysaccharides. The differences in extraction, separation, purification, structural characterization, and pharmacological activities of the four polysaccharides are compared and clarified. Upon examination of the current research literature, it becomes evident that the extraction and separation processes of the four polysaccharides are highly similar. Modern pharmacological studies have corroborated the multiple biological activities of these polysaccharides. These activities encompass a range of beneficial effects, including antioxidant stress injury, fatigue reduction, tumor inhibition, depression alleviation, regulation of intestinal flora, immunomodulation, diabetes management, central nervous system protection, anti-aging, and improvement of skin health. This paper presents a review of studies on the extraction, purification, characterization, and bioactivities of four natural plant ginseng polysaccharides. Furthermore, the review presents the most recent research findings on their pharmacological activities. The information provides a theoretical basis for the future application of natural plant polysaccharides and offers a new perspective for the in-depth development of the medicinal value of ginseng in the clinical practice of traditional Chinese medicine.


Asunto(s)
Panax , Polisacáridos , Panax/química , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Humanos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación
15.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2991-3001, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041159

RESUMEN

Neuropathic pain(NP) is difficult to be treated since it has similar phenotypes but different pathogenesis in different pathological stages. Targeted intervention of the core regulatory elements at different pathological stages of NP has become a new direction of drug research and development in recent years and provides the possibility for the treatment of NP. The Mongolian medicine Naru-3(NR-3) is effective in the treatment of sciatica and trigeminal neuralgia, the mechanisms of which remain unknown. On the basis of the previous study of the priming stage, this study established the mouse model of spinal nerve ligation(SNL) and measured the changes of pain thresholds by behavioral tests. The network analysis, Western blot, immunofluorescence assay, ELISA, and agonist/antagonist were employed to decipher the mechanism of NR-3 in the treatment of NP in the maintenance stage. The results showed that NR-3 increased the mechanical and thermal pain thresholds of SNL mice, while it had no significant effect on the basal pain threshold of normal mice. NR-3 may relieve the pain in the maintenance stage of NP by blocking the matrix metalloproteinase 2(MMP2)/interleukin-1ß(IL-1ß) pathway in the astrocytes of the dorsal root ganglion(DRG) and spinal cord. The findings have enriched the biological connotation of NR-3 in the treatment of the maintenance stage of NP and provide reference for the rational use of this medicine in clinical practice.


Asunto(s)
Astrocitos , Medicina Tradicional Mongoliana , Neuralgia , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratones , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Modelos Animales de Enfermedad
16.
Artículo en Inglés | MEDLINE | ID: mdl-39041267

RESUMEN

OBJECTIVE: This investigation aims to explore the expression levels of serine protease 8 (PRSS8) in gefitinib-resistant Non-Small Cell Lung Cancer (NSCLC) cell lines (PC9/GR) and elucidate its mechanism of action. METHODOLOGY: We measured PRSS8 expression in gefitinib-resistant (PC9/GR) and sensitive (PC9) NSCLC cell lines using Western blot analysis. PRSS8-specific small interfering RNA (PRSS8-siRNA), a recombinant plasmid, and a corresponding blank control were transfected into PC9/GR cells. Subsequently, Western blot analyses were conducted to assess the expression levels of PRSS8, phosphorylated AKT (p-AKT), AKT, phosphorylated mTOR (p-mTOR), mTOR, and various apoptosis-related proteins within each group. Additionally, a cell proliferation assay utilizing Cell Counting Kit-8 (CCK8) was performed on each group treated with gefitinib. RESULT: PRSS8 expression was markedly higher in PC9/GR cells compared to PC9 cells (p < 0.05). The group treated with PRSS8-siRNA exhibited significantly reduced protein expression levels of PRSS8, p-AKT, p-mTOR, ß-catenin, and BCL-2 compared to the control siRNA (Con-siRNA) group, whereas expressions of Caspase9 and Bax were significantly increased. In the untransfected PC9/GR cells, protein expressions of PRSS8, p-AKT, pmTOR, and BCL-2 were significantly elevated when compared with the plasmid-transfected group, which also showed a significant reduction in Bax expression. The proliferative activity of the PRSS8-siRNA group postgefitinib treatment was significantly diminished at 24, 48, and 72 hours in comparison to the Con-siRNA group. CONCLUSION: The findings indicate that PRSS8 contributes to the acquisition of resistance to gefitinib in NSCLC, potentially through regulation of the AKT/mTOR signaling pathway.

17.
Chin J Nat Med ; 22(6): 515-529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38906599

RESUMEN

Depression ranks among the most common neuropsychiatric disorders globally. Current studies examining the roles of inflammation and mitochondrial autophagy in the antidepressant efficacy of paeoniflorin (PF) are sparse. This study aimed to elucidate PF's antidepressant mechanism by promoting autophagy and inhibiting NLRP3 inflammasome activation using chronic unpredictable mild stimulation (CUMS)-induced C57BL/6 mouse models in vivo and corticosterone (CORT)-induced HT22 cell models in vitro. Results demonstrated that PF enhanced the viability of HT22 cells following CORT exposure, restored mitochondrial membrane potential (MMP), reduced reactive oxygen species accumulation, increased LC3 fluorescence intensity, and suppressed inflammatory cytokine secretion and inflammation activation. Additionally, PF ameliorated depressive behaviors induced by CUMS and improved damage in hippocampal neurons. It also reduced the expression of NLRP3, ASC, Caspase-1, IL-1ß, and the assembly of the NLRP3 inflammasome. Moreover, PF upregulated the expression of autophagy-related proteins in the hippocampus, facilitating the clearance of damaged mitochondria and enhancing autophagy. The role of autophagy in PF's antidepressant effects was further confirmed through the use of the autophagy inhibitor 3-methyladenine (3-MA), which reduced the efficacy of PF. In conclusion, PF effectively improved depressive behaviors in CUMS-induced mice and reduced NLRP3-mediated inflammation both in vivo and in vitro, likely via the induction of autophagy.


Asunto(s)
Autofagia , Depresión , Glucósidos , Inflamasomas , Ratones Endogámicos C57BL , Mitocondrias , Monoterpenos , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Glucósidos/farmacología , Autofagia/efectos de los fármacos , Monoterpenos/farmacología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo
18.
Korean J Physiol Pharmacol ; 28(4): 361-377, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38926843

RESUMEN

The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aß1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of Aß and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.

19.
Nutrients ; 16(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38892482

RESUMEN

Skin problems caused by aging have attracted much attention, and marine collagen peptides have been proved to improve these problems, while mammalian collagen peptides are rarely reported. In this study, fermented deer bone collagen peptide (FCP) and non-fermented deer bone collagen peptide (NCP) were extracted from fermented and non-fermented deer bone, respectively, and their peptide sequences and differential proteins were analyzed using LC-MS/MS technology. After they were applied to aging mice induced with D-gal, the skin hydration ability, antioxidant ability, collagen synthesis, and degradation ability of the mice were studied. The results show that FCP and NCP are mainly peptides that constitute type Ⅰ collagen, and their peptide segments are different. In vivo experiments show that FCP and NCP can improve the richness of collagen fibers in the skin of aging mice; improve the hydration ability of skin; promote the activity of antioxidant-related enzymes; and also show that through the TGF-ß and MAPK pathways, the synthesis and degradation of collagen in skin are regulated. These results show that deer bone collagen peptide can improve skin problems caused by aging, promote skin hydration and antioxidant capacity of aging mice, and regulate collagen synthesis and degradation through the MAPK pathway.


Asunto(s)
Envejecimiento , Antioxidantes , Huesos , Colágeno , Ciervos , Piel , Animales , Antioxidantes/farmacología , Ratones , Piel/metabolismo , Piel/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Colágeno/metabolismo , Envejecimiento/efectos de los fármacos , Administración Oral , Péptidos/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Masculino , Fermentación , Colágeno Tipo I/metabolismo
20.
Plant Cell ; 36(9): 3483-3497, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38819305

RESUMEN

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of glycine 14 to threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-GFP (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.


Asunto(s)
Hordeum , Nicotiana , Enfermedades de las Plantas , Rhabdoviridae , Hordeum/virología , Hordeum/genética , Enfermedades de las Plantas/virología , Rhabdoviridae/fisiología , Rhabdoviridae/genética , Animales , Nicotiana/virología , Nicotiana/genética , Potasio/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Insectos Vectores/virología , Virus de Plantas/fisiología , Virus de Plantas/patogenicidad , Virus de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA