Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cell Rep ; 27(10): 2799-2808.e3, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167127

RESUMEN

Reciprocal communication between neurons and oligodendrocytes is essential for the generation and localization of myelin, a critical feature of the CNS. In the neocortex, individual oligodendrocytes can myelinate multiple axons; however, the neuronal origin of the myelinated axons has remained undefined and, while largely assumed to be from excitatory pyramidal neurons, it also includes inhibitory interneurons. This raises the question of whether individual oligodendrocytes display bias for the class of neurons that they myelinate. Here, we find that different classes of cortical interneurons show distinct patterns of myelin distribution starting from the onset of myelination, suggesting that oligodendrocytes can recognize the class identity of individual types of interneurons that they target. Notably, we show that some oligodendrocytes disproportionately myelinate the axons of inhibitory interneurons, whereas others primarily target excitatory axons or show no bias. These results point toward very specific interactions between oligodendrocytes and neurons and raise the interesting question of why myelination is differentially directed toward different neuron types.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/fisiología , Neocórtex/fisiología , Oligodendroglía/metabolismo , Animales , Axones/fisiología , Axones/ultraestructura , Femenino , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/fisiología , Interneuronas/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Neocórtex/metabolismo , Neocórtex/ultraestructura , Inhibición Neural , Oligodendroglía/citología , Oligodendroglía/fisiología , Oligodendroglía/ultraestructura , Células Piramidales/metabolismo , Programas Informáticos
2.
J Physiol ; 593(19): 4373-86, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26174503

RESUMEN

KEY POINTS: The hippocampal CA1 region is highly vulnerable to ischaemic stroke. Two forms of AMPA receptor (AMPAR) plasticity - an anoxic form of long-term potentiation and a delayed increase in Ca(2+) -permeable (CP) AMPARs - contribute to this susceptibility by increasing excitotoxicity. In CA1, the acid-sensing ion channel 1a (ASIC1a) is known to facilitate LTP and contribute to ischaemic acidotoxicity. We have examined the role of ASIC1a in AMPAR ischaemic plasticity in organotypic hippocampal slice cultures exposed to oxygen glucose deprivation (a model of ischaemic stroke), and in hippocampal pyramidal neuron cultures exposed to acidosis. We find that ASIC1a activation promotes both forms of AMPAR plasticity and that neuroprotection, by inhibiting ASIC1a, circumvents any further benefit of blocking CP-AMPARs. Our observations establish a new interaction between acidotoxicity and excitotoxicity, and provide insight into the role of ASIC1a and CP-AMPARs in neurodegeneration. Specifically, we propose that ASIC1a activation drives certain post-ischaemic forms of CP-AMPAR plasticity. ABSTRACT: The CA1 region of the hippocampus is particularly vulnerable to ischaemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischaemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca(2+) -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a), which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischaemic neuronal death and to physiologically induced LTP. This raises the question does ASIC1a activation drive the post-ischaemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPNs) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischaemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischaemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Acidosis/fisiopatología , Isquemia Encefálica/fisiopatología , Región CA1 Hipocampal/fisiología , Células Piramidales/fisiología , Receptores AMPA/fisiología , Canales Iónicos Sensibles al Ácido/genética , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores , Hipoglucemia/fisiopatología , Hipoxia/fisiopatología , Ratones Noqueados , Ratas Wistar
3.
Nat Neurosci ; 18(5): 674-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25821912

RESUMEN

Diffuse white matter injury (DWMI), a leading cause of neurodevelopmental disabilities in preterm infants, is characterized by reduced oligodendrocyte formation. NG2-expressing oligodendrocyte precursor cells (NG2 cells) are exposed to various extrinsic regulatory signals, including the neurotransmitter GABA. We investigated GABAergic signaling to cerebellar white matter NG2 cells in a mouse model of DWMI (chronic neonatal hypoxia). We found that hypoxia caused a loss of GABAA receptor-mediated synaptic input to NG2 cells, extensive proliferation of these cells and delayed oligodendrocyte maturation, leading to dysmyelination. Treatment of control mice with a GABAA receptor antagonist or deletion of the chloride-accumulating transporter NKCC1 mimicked the effects of hypoxia. Conversely, blockade of GABA catabolism or GABA uptake reduced NG2 cell numbers and increased the formation of mature oligodendrocytes both in control and hypoxic mice. Our results indicate that GABAergic signaling regulates NG2 cell differentiation and proliferation in vivo, and suggest that its perturbation is a key factor in DWMI.


Asunto(s)
Cerebelo/patología , Enfermedades Desmielinizantes/etiología , Hipoxia Encefálica/fisiopatología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Oligodendroglía/citología , Receptores de GABA-A/fisiología , Sustancia Blanca/lesiones , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Asfixia Neonatal/patología , Carbacol/farmacología , Recuento de Células , Células Cultivadas , Cerebelo/crecimiento & desarrollo , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Antagonistas de Receptores de GABA-A/toxicidad , Hipoxia Encefálica/patología , Interneuronas/patología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Ácidos Nipecóticos/farmacología , Ácidos Nipecóticos/uso terapéutico , Células de Purkinje/patología , Miembro 2 de la Familia de Transportadores de Soluto 12/deficiencia , Miembro 2 de la Familia de Transportadores de Soluto 12/fisiología , Tiagabina , Vigabatrin/farmacología , Vigabatrin/uso terapéutico
4.
J Neurosci ; 33(21): 8990-9002, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23699510

RESUMEN

The pathological mechanisms underlying neurological deficits observed in individuals born prematurely are not completely understood. A common form of injury in the preterm population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate PWMI, there is an urgent need to understand the pathological mechanism(s) involved on a neurobiological, structural, and functional level. Recent clinical data suggest that a percentage of premature infants experience relative hyperoxia. Using a hyperoxic model of premature brain injury, we have previously demonstrated that neonatal hyperoxia exposure in the mouse disrupts development of the white matter (WM) by delaying the maturation of the oligodendroglial lineage. In the present study, we address the question of how hyperoxia-induced alterations in WM development affect overall WM integrity and axonal function. We show that neonatal hyperoxia causes ultrastructural changes, including: myelination abnormalities (i.e., reduced myelin thickness and abnormal extramyelin loops) and axonopathy (i.e., altered neurofilament phosphorylation, paranodal defects, and changes in node of Ranvier number and structure). This disruption of axon-oligodendrocyte integrity results in the lasting impairment of conduction properties in the adult WM. Understanding the pathology of premature PWMI injury will allow for the development of interventional strategies to preserve WM integrity and function.


Asunto(s)
Axones/patología , Encéfalo/patología , Hiperoxia/patología , Fibras Nerviosas Mielínicas/patología , Oligodendroglía/patología , 2',3'-Nucleótido Cíclico Fosfodiesterasas/genética , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Axones/ultraestructura , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Transmisión , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligodendroglía/ultraestructura
5.
J Neurosci ; 32(29): 9796-804, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22815494

RESUMEN

Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable and GluA2-lacking calcium-permeable (CP) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I(KA)/I(Glu) ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia.


Asunto(s)
Proteínas del Huevo/metabolismo , Proteínas de la Membrana/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Células Cultivadas , Proteínas del Huevo/genética , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Ácido Kaínico/farmacología , Masculino , Proteínas de la Membrana/genética , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Nervio Óptico/citología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Ratas , Receptores AMPA/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transfección
6.
Nat Neurosci ; 14(11): 1430-8, 2011 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-21983683

RESUMEN

Oligodendrocyte precursor cells (OPCs), a major glial cell type that gives rise to myelinating oligodendrocytes in the CNS, express calcium-permeable AMPA receptors (CP-AMPARs). Although CP-AMPARs are important for OPC proliferation and neuron-glia signaling, they render OPCs susceptible to ischemic damage in early development. We identified factors controlling the dynamic regulation of AMPAR subtypes in OPCs from rat optic nerve and mouse cerebellar cortex. We found that activation of group 1 mGluRs drove an increase in the proportion of CP-AMPARs, reflected by an increase in single-channel conductance and inward rectification. This plasticity required the elevation of intracellular calcium and used PI3K, PICK-1 and the JNK pathway. In white matter, neurons and astrocytes release both ATP and glutamate. Unexpectedly, activation of purinergic receptors in OPCs decreased CP-AMPAR expression, suggesting a capacity for homeostatic regulation. Finally, we found that stargazin-related transmembrane AMPAR regulatory proteins, which are critical for AMPAR surface expression in neurons, regulate CP-AMPAR plasticity in OPCs.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico/fisiología , Plasticidad Neuronal/fisiología , Oligodendroglía/fisiología , Receptores AMPA/metabolismo , Animales , Animales Recién Nacidos , Antígenos/metabolismo , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Fenómenos Biofísicos/fisiología , Canales de Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula , Cerebelo/citología , Inhibidores Enzimáticos/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Galactosilceramidasa/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Ácido Glutámico/farmacología , Glicinérgicos/farmacología , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Proteínas Luminiscentes/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Transgénicos , Mutación/genética , Plasticidad Neuronal/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligodendroglía/citología , Nervio Óptico/citología , Proteoglicanos/metabolismo , Ratas , Receptores AMPA/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Madre/metabolismo , Estricnina/farmacología , Tetrodotoxina/farmacología
7.
Nat Neurosci ; 12(3): 277-85, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19234459

RESUMEN

Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (gamma-2), no TARP has been described that can specifically regulate the important class of calcium-permeable (CP-) AMPARs. We examined the stargazin-related protein gamma-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. gamma-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, gamma-5 acts as a TARP and serves this role in Bergmann glia. Whereas gamma-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role for gamma-5 in regulating the functional contribution of CP-AMPARs.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Receptores AMPA/clasificación , Receptores AMPA/fisiología , Animales , Canales de Calcio/genética , Canales de Calcio/fisiología , Señalización del Calcio/genética , Línea Celular , Permeabilidad de la Membrana Celular/genética , Humanos , Neuroglía/química , Neuroglía/metabolismo , Neuroglía/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transporte de Proteínas/genética , Ratas , Receptores AMPA/genética , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA