Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Dalton Trans ; 53(25): 10744-10752, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38873804

RESUMEN

Lanthanide ions are commonly used as co-dopant ions for trap regulation in afterglow phosphors. However, rationally designing trap distribution to improve the afterglow performance remains challenging. Herein, the vacuum referred binding energy (VRBE) diagram was constructed to aid in the search for effective lanthanide ions to improve the near-infrared afterglow properties of ZnGa2O4:Cr3+. The constructed VRBE diagram indicates that Ln3+ (Ln = Sm, Yb, Tb) ions can create traps in ZnGa2O4, which is confirmed by the luminescence characterization. Results show that doping with Ln3+ (Ln = Sm, Yb, Tb) ions can significantly improve the afterglow intensity and duration of the phosphor due to the increased shallow trap density and trap depth. Among these samples, the Sm3+-doped sample exhibits the best afterglow properties. The afterglow enhancement mechanism by Ln3+ doping is discussed in detail. This work not only presents the lanthanide ions that can be used to regulate the trap distribution of ZnGa2O4:Cr3+ phosphors, but also provides new insights for the design of new afterglow phosphors with practical application value.

2.
ACS Appl Mater Interfaces ; 16(24): 31322-31331, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38857900

RESUMEN

Metal halide-based broadband near-infrared (NIR) luminescent materials face problems such as complicated preparation, high cost, low photoluminescence quantum yield, and high excitation energy. Here, incorporating Sb3+ and Br- into (C20H20P)2ZnCl4 crystals allowed for the achievement of efficient broadband near-infrared emission under 400 nm excitation while maintaining satisfactory environmental and thermal stability. The compounds exhibit a broad range of emission bands from 550 to 1050 nm, with a photoluminescence quantum yield of 93.57%. This is a groundbreaking achievement for organic-inorganic hybrid metal halide NIR luminescent materials. The near-infrared emission is suggested to originate from [SbX5]2-, as supported by the femtosecond transient absorption spectra and density-functional theory calculations. This phosphor-based NIR LEDs successfully demonstrate potential applications in night vision, medical imaging, information encryption, and anticounterfeiting.

3.
Chem Sci ; 15(22): 8514-8529, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846389

RESUMEN

The advancement of optoelectronic applications relies heavily on the development of high-performance photodetectors that are self-driven and capable of detecting a wide range of wavelengths. CsPbI3 nanorods (NRs), known for their outstanding optical and electrical properties, offer direct bandgap characteristics, high absorption coefficients, and long carrier diffusion lengths. However, challenges such as stability and limited photoluminescence quantum yield have impeded their widespread application. By integrating PbSe colloidal quantum dots (CQDs) with CsPbI3 NRs, the hybrid nanomaterial harnesses the benefits of each component, resulting in enhanced optoelectronic properties and device performance. In this work, a self-powered and broadband photodetector, ITO/ZnO/CsPbI3:PbSe/CuSCN/Au, is fabricated, in which CsPbI3 NRs are decorated with PbSe QDs as the photoactive layer, ZnO as the electron-transporting layer and CuSCN as the hole-transporting layer. The device performance is further improved through the incorporation of Cs2CO3 into the ZnO layer, resulting in an enhancement of its overall operational characteristics. As a result, a notable responsivity of 9.29 A W-1 and a specific detectivity of 3.17 × 1014 Jones were achieved. Certainly, the TCAD simulations closely correlate with our experimental data, facilitating a comprehensive exploration of the fundamental physical mechanisms responsible for the improved performance of these surface-passivated heterojunction photodetectors. This opens up exciting possibilities for substantial advancements in the realm of next-generation optoelectronic devices.

4.
Nanotechnology ; 35(39)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838646

RESUMEN

Transition metal (TM) ion doping in II-VI semiconductors can produce exciton magnetic polarons (EMPs) and localized EMPs containing longitudinal optical (LO) phonon coupling, which will be discussed in this paper. TM ion doping in II-VI semiconductors for a dilute magnetic semiconductor show emission via magnetic polarons (MPs) together with hot carrier effects that need to be understood via its optical properties. The high excitation power that is responsible for hot carrier effects suppresses the charge trapping effect in low exciton binding energy (8.12 meV) semiconductors, even at room temperature (RT). The large polaron radius exhibits strong interaction between the carrier and MP, resulting in anharmonicity effects, in which the side-band energy overtone to LO phonons. The photon-like polaritons exhibit polarized spin interactions with LO phonons that show strong spin-phonon polaritons at RT. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free excitons (FX) and FXs interacting with 2LO phonon-spin interactions, corresponding to3T1(3F) →1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at3T1(3F) →1E(1G). In addition, other d-d transitions of single Ni ions (600-900 nm) appear at the low-energy side. RT energy shifts of 14-38 meV are observed due to localized states with density-of-states tails extending far into the bandgap-related spin-induced localization at the valence band. These results show spin-spin magnetic coupling and spin-phonon interactions at RT that open up a more realistic new horizon of optically controlled dilute magnetic semiconductor applications.

5.
ACS Appl Mater Interfaces ; 16(24): 31332-31340, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38832752

RESUMEN

Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the reports on the optical properties of DPs primarily concentrate on the room temperature state and only exhibit single emission band. Here, we synthesized Cs2NaYCl6:Sb3+, Dy3+ DPs by a solvothermal method to realize white light emission with photoluminescence (PL) quantum yield as high as 70.7%. The energy-transfer process from self-trapped excitons (STEs) to Dy3+ ions was revealed by optical characterization and theoretical simulation calculations. Interestingly, we observed the double-emission from low-energy STE emission of Sb3+ ions and Dy3+ emission at low temperatures, and the double-emission is consistent with the asymmetric doublet feature of the 3P1 → 1S0 transition split into two minima. The PL spectra further showed that the fluorescence intensity ratios of Dy3+ ions at 580 and 680 nm were strongly temperature-dependent, and the relative sensitivity is up to 1.79% K-1 at 360 K. Moreover, the near-infrared and radiation luminescence properties indicated that the Cs2NaYCl6:Sb3+, Dy3+ DPs also have good prospects for night vision and radiation detection, as well as the great potential for applications in solid-state illumination and optical temperature measurement.

6.
J Colloid Interface Sci ; 669: 804-815, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38749219

RESUMEN

Herein, a novel copper selenide/zinc selenide/Nitrogen-doped carbon (Cu2Se/ZnSe/NC) sphere was constructed via a combination of cation exchange, selenization and carbonization approaches with zinc-based metal-organic frameworks (ZIF-8) as precursor for sulfadiazine (SDZ) removal. Compared with the ZnSe/NC, the defective Cu2Se/ZnSe interface in the optimizing Cu-ZnSe/NC2 sample caused a remarkably improved adsorption performance. Notably, the adsorption capacity of 129.32 mg/g was better than that of mostly reported adsorbents for SDZ. And the adsorption referred to multiple-layer physical-chemical process that was spontaneous and exothermic. Besides, the Cu-ZnSe/NC2 displayed fast adsorption equilibrium of about 20 min and significant anti-interference ability for inorganic ions. Specially, the adsorbent possessed excellent stability and reusability, which could also be applied for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) dyes removal. Ultimately, the charge redistribution of Cu2Se/ZnSe interface greatly contributes the superior adsorption performance for SDZ, in which electrostatic attraction occupied extremely crucial status as compared to π-π electron-donor-acceptor (π-π EDA) interaction and hydrogen bonding (H-bonding), as revealed by the density function theory (DFT) calculations and experimental results. This study can provide a guideline for design of high-efficient adsorbent with interfacial charge redistribution.

7.
Opt Lett ; 49(10): 2553-2556, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748103

RESUMEN

Plenty of exotic phenomena in moiré superlattices arise from the emergence of flatbands, but their significance could be diminished by structural disorders that will significantly alter flatbands. Thus, unveiling the effects of disorder on moiré flatbands is crucial. In this work, we explore the disorder effects on two sets of flatbands in silicon-based mismatched moiré superlattices, where the level of disorder is controlled by varying the magnitude of random perturbations of the locations of silicon strips. The results reveal that, after ensemble averaging, the average spectral positions of the four flatbands exhibit stability despite variations in the degree of disorder. However, the δ-like density of states (DOS) related to flatbands in the perfect superlattice evolves into a finite-width envelope of high DOS. By increasing the level of disorder, the width of the DOS envelope increases accordingly. Particularly, we observe a fascinating contrast: the width of bandgap flatbands saturates after initial growth, while the width of dispersive-band-crossed flatbands exhibits a linear increase versus the disorder. This unveils fundamental differences in how flatbands respond to structural imperfections, offering crucial insights into their perturbation characteristics within moiré superlattices. Our work offers new perspectives on flatbands in partially disordered moiré superlattices.

8.
J Colloid Interface Sci ; 666: 560-571, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613978

RESUMEN

The host lattice environments of Sb3+ has a great influence on its photophysical properties. Here, we synthesized three zero-dimensional organic metal halides of (TPA)2SbCl5 (1), Sb3+-doped (TPA)SnCl5(H2O)·2H2O (Sb3+-2), and Sb3+-doped (TPA)2SnCl6 (Sb3+-3). Compared with the intense orange emission of 1, Sb3+-3 has smaller lattice distortion, thus effectively suppressing the exciton transformation from singlet to triplet self-trapped exciton (STE) states, which makes Sb3+-3 has stronger singlet STE emission and further bring a white emission with a photoluminescence quantum efficiency (PLQE) of 93.4%. Conversely, the non-emission can be observed in Sb3+-2 even though it has a similar [SbCl5]2- structure to 1, which should be due to its indirect bandgap characteristics and the effective non-radiative relaxation caused by H2O in the lattice. Interestingly, the non-emission of Sb3+-2 can convert into the bright emission of Sb3+-3 under TPACl DMF solution treatment. Meanwhile, the white emission under 315 nm excitation of Sb3+-3 can change into orange emission upon 365 nm irradiation, and the luminescence can be further quenched by the treatment of HCl. Therefore, a triple-mode reversible luminescence switch of off-onI-onII-off can be achieved. Finally, we demonstrated the applications of Sb3+-doped compounds in single-component white light illumination, latent fingerprint detection, fluorescent anti-counterfeiting, and information encryption.

9.
Small ; : e2401093, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682733

RESUMEN

Rare-earth halide double perovskites (DPs) have attracted extensive attention due to their excellent optoelectronic performance. However, the correlation between luminescence performance, crystal structure, and temperature, as well as the inherent energy transfer mechanism, is not well understood. Herein, Lanthanide ions (Ln3+: Nd3+ or Dy3+) as the co-dopants are incorporated into Sb3+ doped Cs2NaYbCl6 DPs to construct energy transfer (ET) models to reveal the effects of temperature and energy levels of rare earth on luminescence and ET. The different excited state structures of Sb3+-Ln3+ doped Cs2NaYbCl6 DPs at different temperatures and relative positions of energy levels of rare earth synergistically determine the physical processes of luminescence. These multi-mode luminescent materials exhibit good performance in anti-counterfeiting, NIR imaging, and temperature sensing. This work provides new physical insights into the effects of temperature and energy levels of rare earth on the energy transfer mechanism and related photophysical process.

10.
Nanoscale ; 16(13): 6573-6584, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38465698

RESUMEN

All-inorganic lead halide perovskites and quantum dots (QDs) have gained significant attention since their emergence, owing to their immense potential for applications in optoelectronic devices. Here, enhanced-performance broadband photodetectors based on the bulk-heterostructure of a CsPbBr3 perovskite and PbS colloidal quantum dots (CQDs) are presented, and 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4) ionic liquids as a dual-purpose additive were introduced in the blended film to regulate the surface of QDs by facilitating surface passivation, adjusting energy levels, and coupling with longer alkyl chains as compared to iodide ions (I-). As a result, a superior-quality bulk-heterostructure based photodetector with long-term stability was obtained, showing outstanding performance in photodetection across the visible to near-infrared wavelength range, demonstrating a high photoresponsivity of 22.4 A W-1 with a response time of 16.2 ms and a specific detectivity of 1.58 × 1014 Jones under 405 nm illumination. Thus, this work provides a novel modification strategy for PbS:CsPbBr3 as a promising material for novel optoelectronics.

11.
Nanotechnology ; 35(26)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38467061

RESUMEN

For applications in magneto-electronic devices, diluted magnetic semiconductors (DMSs) usually exhibit spin-dependent coupling and induced ferromagnetism at high Curie temperatures. The processes behind the behavior of optical emission and ferromagnetism, which can be identified by complicated microstructural and chemical characteristics, are still not well understood. In this study, the impact of Al co-doping on the electronic, optical, and magnetic properties of Ni(II) doped ZnO monolayers has been investigated using first principles calculations. Ferromagnetism in the co-doped monolayer is mainly triggered by the exchange coupling between the electrons provided by Al co-doping and Ni(II)-dstates; therefore, the estimated Curie temperature is greater than room temperature. The spin-spin couplings in mono-doped and co-doped monolayers were explained using the band-coupling mechanism. Based on the optical study, we observed that the Ni-related absorption peak occurred at 2.13-2.17 eV, showing a redshift as Ni concentrations increased. The FM coupling between Ni ions in the co-doped monolayer may be responsible for the reduction in the fundamental band gap seen with Al co-doping. We observed peaks in the near IR and visible regions of the co-doped monolayer, which improve the optoelectronic device's photovoltaic performance. Additionally, the correlation between optical characteristics and spin-spin couplings has been studied. We found that the Ni(II)'sd-dtransition bands or fundamental band gap in the near configuration undergoes a significant shift in response to AFM and FM coupling, whereas in the far configuration, they have a negligible shift due to the paramagnetic behavior of the Ni ions. These findings suggest that the magnetic coupling in DMS may be utilized for controlling the optical characteristics.

12.
J Colloid Interface Sci ; 662: 426-437, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359506

RESUMEN

The pulp and paper sectors are thriving yet pose significant environmental threats to water bodies, mainly due to the substantial release of pollutants. Lignin-derived compounds are among the most problematic of these contaminants. To address this issue, we present our initial results on utilizing organic semiconductor photocatalysis under visible light for treating lignin-derived compounds. Our investigation has been centered around creating a green and cost-effective organic semiconductor photocatalyst. This catalyst is designed using a structure of bagasse cellulose spheres to support PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))]: MeIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-cyclopentane-1,3-dione[c]-1-methyl-thiophe))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene)). This photocatalyst demonstrates remarkable efficiency, achieving over 91 % degradation of lignin-derived compounds. The superior photocatalytic performance is attributed to three main factors: (1) The ability of PM6 to broaden MeIC's absorption range from 300 to 800 nm, allowing for effective utilization of visible light; (2) the synergistic interaction between PM6 and MeIC, which ensures compatible energy levels and a vast, evenly spread surface area, promoting charge mobility and extensive donor/acceptor interfaces. This synergy significantly enhances the generation and transport of carriers, resulting in a high production of free radicals that accelerate the decomposition of organic materials; (3) The deployment of PM6:MeIC on biomass-based carriers increases the interaction surface with the organic substances. Notably, PM6: MeIC showcases outstanding durability, with its degradation efficiency remaining between 84 % and 91 % across 100 cycles. This study presents a promising approach for designing advanced photocatalysts aimed at degrading common pollutants in papermaking wastewater.

13.
ACS Appl Mater Interfaces ; 16(9): 11694-11703, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38387044

RESUMEN

Recently, photodetectors based on perovskite nanoplatelets (NPLs) have attracted considerable attention in the visible spectral region owing to their large absorption cross-section, high exciton binding energy, excellent charge transfer properties, and appropriate flexibility. However, their stability and performance are still challenging for perovskite NPL photodetectors. Here, a surface engineering strategy to enhance the optical stability of blue-light CsPbBr3 NPLs by acetylenedicarboxylic acid (ATDA) treatment has been developed. ATDA has strong binding capacity and a short chain length, which can effectively passivate defects and significantly improve the photoluminescence quantum efficiency, stability, and carrier mobility of NPLs. As a result, ATDA-treated CsPbBr3 NPLs exhibit improved optical properties in both solutions and films. The NPL solution maintains high PL performance even after being heated at 80 °C for 2 h, and the NPL film remains nondegradable after 4 h of exposure to ultraviolet irradiation. Especially, photodetectors based on the treated CsPbBr3 NPL films demonstrate exceptional performance, especially when the detectivity approaches up to 9.36 × 1012 Jones, which can be comparable to the best CsPbBr3 NPL photodetectors ever reported. More importantly, the assembled devices demonstrated high stability (stored in an air environment for more than 30 days), significantly exceeding that of untreated NPLs.

14.
Inorg Chem ; 63(9): 4355-4363, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38383064

RESUMEN

Organic-inorganic metal halides have become one of the most promising materials in the next generation of optoelectronic applications due to their high charge carrier mobility and tunable band gaps. In this study, Sb:PA6InCl9 and Sb:PA4NaInCl8 single crystals were prepared through evaporation crystallization, respectively. Due to the different degrees of lattice distortions, the highly efficient yellow emission in Sb:PA6InCl9 at 610 nm and the green emission in Sb:PA4NaInCl8 at 545 nm were achieved by regulation of the excited state, respectively. By introducing additional sodium ions in the post-treatment, we found that the zero-dimensional Sb:PA6InCl9 could rapidly convert into a two-dimensional layered structure of Sb:PA4NaInCl8, thus resulting in a novel green/yellow emission switch. This work guides the structural and performance control of organic-inorganic hybrid In-based metal halides and offers broad prospects for luminescent switching in anticounterfeiting applications.

15.
Mater Horiz ; 11(9): 2230-2241, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38421281

RESUMEN

Recently, organic Sb(III)-based metal halides have achieved significant results in the visible light region due to their efficient emission. However, realizing efficient broadband near-infrared (NIR) emission in such materials is a great challenge. Herein, we developed three different NIR emitters via a coordination structure modulation strategy in Sb3+-doped zero-dimensional organic metal chlorides of (C20H20P)2MnCl4, (C20H20P)2ZnCl4, and (C20H20P)2CdCl4 with tetrahedral structure. More specifically, after the dopant Sb3+ is inserted into the host lattice, the coordination structures of Sb3+ ions can change from [SbCl5]2- square-pyramidal configuration to [SbCl4]- clusters, which will bring a larger lattice distortion degree to the excited state compared to the ground state, resulting in a larger Stokes shift. Thus, efficient NIR emission with near-unity photoluminescence quantum yield (PLQY) can be obtained in Sb3+-doped compounds under 365 nm excitation. Moreover, Sb3+-doped NIR emitters also show remarkable stabilities, which prompts us to fabricate NIR phosphor conversion light-emitting diodes (pc-LEDs) and demonstrate their application in night vision. More interestingly, the Sb3+-doped (C20H20P)2MnCl4 shows tunable emission characteristics, which can be tuned from green to greenish-yellow, orange, red, and NIR emission under different external stimuli, and thus we can demonstrate the applications of this compound in quintuple-mode fluorescence anti-counterfeiting and information encryption.

16.
ACS Appl Mater Interfaces ; 16(3): 3841-3852, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207013

RESUMEN

In recent years, low-dimensional organic-inorganic hybrid metal halides (OIHMHs) have shown excellent photophysical properties due to their quantum structure, adjustable energy levels, and energy transfer between inorganic and organic components, which have attracted extensive attention from researchers. Herein, we synthesize a zero-dimensional (0D) OIHMH, Sb3+:(Gua)3InCl6, by introducing Sb3+ into (Gua)3InCl6, which undergoes a significant enhancement of the emission peak at 580 nm with the photoluminescence quantum yield (PLQY) boosted from 17.86 to 95.72% when excited at 340 nm. This boost in photoluminescence of the doped sample was studied by combining ultrafast femtosecond transient absorption, temperature-dependent photoluminescence (PL) spectra, and density functional theory (DFT) calculation, revealing the process of self-trapped exciton (STE) recombination to emit light at both Sb and In sites in this 0D structure simultaneously. This material with the lowest dark STE level at the In site for emission in the undoped sample can amazingly yield very strong emission in the doped sample, which has never been observed before. Finally, we tested its application in a photoelectric device. This work not only helps to gain a deeper understanding of the formation of STEs in In-based halides but also plays a certain guiding role in the design of new luminescent materials.

17.
Nanotechnology ; 35(11)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38086072

RESUMEN

Lead-free halide double perovskites are considered as one of the most promising materials in optoelectronic devices, such as solar cells, photodetectors, and light-emitting diodes (LEDs), due to their environmental friendliness and chemical stability. However, the extremely low photoluminescence quantum yield (PLQY) of self-trapped excitons (STEs) emission from lead-free halide double perovskites impedes their applications. Herein, Sb3+ions were doped into rare-earth-based double perovskite Cs2NaScCl6single crystals (SCs), resulting in a large enhancement of PLQY from 12.57% to 87.37%. Moreover, by co-doping Sb3+and Ho3+into Cs2NaScCl6SCs, the emission color can be tuned from blue to red, due to an efficient energy transfer from STEs to Ho3+ions. Finally, the synthesized sample was used in multicolor LED, which exhibited excellent stability and optical properties. This work not only provides a new strategy for improving the optical properties of Cs2NaScCl6SCs, but also suggests its potential application in multicolor LEDs.

18.
J Phys Chem Lett ; 14(51): 11543-11549, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38095940

RESUMEN

Mn2+ doped perovskite nanocrystals have garnered significant attention in optoelectronic applications. However, the synthesis of Mn2+ doped perovskite nanowires (NWs) poses challenges, and the dynamics of energy transfer from the exciton to Mn2+ remains unexplored, which is crucial for optimizing Mn2+ luminescence efficiency. Herein, we present a method to synthesize Mn2+ doped CsPbBr3 NWs with a photoluminescence quantum yield of 52% by diffusing Mn2+ into seed CsPbBr3 NWs grown via a hot injection method. We control the solution and lattice chemical potentials of Pb2+ and Mn2+ to enable Mn2+ to diffuse into the CsPbBr3 NWs while minimizing Ostwald ripening. Variable temperature photoluminescence spectroscopy reveals that the energy transfer from the exciton to Mn2+ in Mn2+ doped CsPbBr3 NWs is temperature dependent. A dynamic competition is observed between energy transfer and backward energy transfer, resulting in stronger Mn2+ photoluminescence at 80 K. This work provides a specific synthesis pathway for Mn2+ doped CsPbBr3 NWs and sheds light on their exciton-to-Mn2+ energy transfer dynamics.

19.
J Phys Chem Lett ; 14(51): 11597-11602, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38100080

RESUMEN

Metal halide crystals are widely used in optoelectronic fields due to their excellent optical properties. The hunt for a lead-free halide semiconductor with superior optical performance is a particularly fascinating topic in order to avoid the toxicity of lead. Here, we incorporate Ni2+ into a series of halide nanocrystals (NCs) through solution-phase synthesis. By modifying the A-site and varying the halide compositions, we successfully achieved significant tunability of the blue emission of the Ni2+-doped AX (A = K+, Rb+, NH2CH = NH2+ (FA), CH3NH3+ (MA); X = Br, I) NCs, ranging from 375 to 490 nm, due to the antiferromagnetic polaron (AMP), which is in contrast with the excitonic magnetic polarons (EMP) from those with ferromagnetic (FM) coupling between transition metal ions in similar compounds. This work shows that Ni2+-doped halide crystals could become a typical example providing AMP excitation as the optional emission centers for use in light emitting devices.

20.
Nanomaterials (Basel) ; 13(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37947712

RESUMEN

Metal halide perovskites have unparalleled optoelectronic properties and broad application potential and are expected to become the next epoch-making optoelectronic semiconductors. Although remarkable achievements have been achieved with lead halide perovskites, the toxicity of lead inhibits the development of such materials. Recently, Sb3+-activated luminescent metal halide perovskite materials with low toxicity, high efficiency, broadband, large Stokes shift, and emission wavelengths covering the entire visible and near-infrared regions have been considered one of the most likely luminescent materials to replace lead halide perovskites. This review reviews the synthesis, luminescence mechanism, structure, and luminescence properties of the compounds. The basic luminescence properties of Sb3+-activated luminescent metal halide perovskites and their applications in WLED, electroluminescence LED, temperature sensing, optical anti-counterfeiting, and X-ray scintillators are introduced. Finally, the development prospects and challenges of Sb3+-activated luminescent metal halide perovskites are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA