Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
ACS Nano ; 18(26): 17282-17292, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904992

RESUMEN

Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs3Sb2Br9 surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs3Sb2Br9 epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.

2.
Natl Sci Rev ; 10(7): nwad061, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37600562

RESUMEN

Molecular ferroelectrics that have excellent ferroelectric properties, a low processing temperature, narrow bandgap, and which are lightweight, have shown great potential in the photovoltaic field. However, two-dimensional (2D) perovskite solar cells with high tunability, excellent photo-physical properties and superior long-term stability are limited by poor out-of-plane conductivity from intrinsic multi-quantum-well electronic structures. This work uses 2D molecular ferroelectric film as the absorbing layer to break the limit of multiple quantum wells. Our 2D ferroelectric solar cells achieve the highest open-circuit voltage (1.29 V) and the best efficiency (3.71%) among the 2D (n = 1) Ruddlesden-Popper perovskite solar cells due to the enhanced out-of-plane charge transport induced by molecular ferroelectrics with a strong saturation polarization, high Curie temperature and multiaxial characteristics. This work aims to break the inefficient out-of-plane charge transport caused by the limit of the multi-quantum-well electronic structure and improve the efficiency of 2D ferroelectric solar cells.

3.
Nano Lett ; 23(15): 6892-6899, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37470724

RESUMEN

Ultrathin superconducting films are the basis of superconductor devices. van der Waals (vdW) NbSe2 with noncentrosymmetry exhibits exotic superconductivity and shows promise in superconductor electronic devices. However, the growth of inch-scale NbSe2 films with layer regulation remains a challenge because vdW structural material growth is strongly dependent on the epitaxial guidance of the substrate. Herein, a vdW self-epitaxy strategy is developed to eliminate the substrate driving force in film growth and realize inch-sized NbSe2 film growth with thicknesses from 2.1 to 12.1 nm on arbitrary substrates. The superconducting transition temperature of 5.1 K and superconducting transition width of 0.30 K prove the top homogeneity and quality of superconductivity among all of the synthetic NbSe2 films. Coupled with a large area and substrate compatibility, this work paves the way for developing NbSe2 superconductor electronics.

4.
Nanotechnology ; 34(36)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37295408

RESUMEN

Formamidinium lead triiodide (FAPbI3) is considered as the prospective light-absorbing layer on account of the close-to-ideal bandgap of theα-phase, wide optical absorption spectrum and good thermal stability. Therefore, how to realizeδtoα-phase transition to obtain phase-pureα-FAPbI3without additives is important for FAPbI3perovskite films. Herein, a homologous post-treatment strategy (HPTS) without additives is proposed to prepare FAPbI3films with pureα-phase. The strategy is processed along with dissolution and reconstruction process during the annealing. The FAPbI3film has tensile strain with the substrate, and the lattice keeps tensile, and the film maintains in anα/δhybrid phase. The HPTS process releases the tensile strain between the lattice and the substrate. The process of strain release realizes the phase transition fromδtoα-phase during this process. This strategy can accelerate the transformation from hexagonalδ-FAPbI3to cubicα-FAPbI3at 120 °C. As a result, the acquiredα-FAPbI3films exhibit better film quality in optical and electrical properties, accordingly achieving device efficiency of 19.34% and enhanced stability. This work explores an effective approach to obtain additive-free and phase-pureα-FAPbI3films through a HPTS to fabricate uniform high-performanceα-FAPbI3perovskite solar cells.


Asunto(s)
Óxidos , Estudios Prospectivos , Transición de Fase
5.
Nat Commun ; 14(1): 3764, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353502

RESUMEN

It is challenging to grow atomically thin non-van der Waals perovskite due to the strong electronic coupling between adjacent layers. Here, we present a colloid-driven low supersaturation crystallization strategy to grow atomically thin Cs3Bi2Br9. The colloid solution drives low-concentration solute in a supersaturation state, contributing to initial heterogeneous nucleation. Simultaneously, the colloids provide a stable precursor source in the low-concentration solute. The surfactant is absorbed in specific crystal nucleation facet resulting in the anisotropic growth of planar dominance. Ionic perovskite Cs3Bi2Br9 is readily grown from monolayered to six-layered Cs3Bi2Br9 corresponding to thicknesses of 0.7, 1.6, 2.7, 3.6, 4.6 and 5.7 nm. The atomically thin Cs3Bi2Br9 presents layer-dependent nonlinear optical performance and stacking-induced second harmonic generation. This work provides a concept for growing atomically thin halide perovskite with non-van der Waal structures and demonstrates potential application for atomically thin single crystals' growth with strong electronic coupling between adjacent layers.


Asunto(s)
Bismuto , Compuestos Inorgánicos , Cristalización , Compuestos de Calcio , Coloides
6.
ACS Nano ; 17(5): 4933-4941, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802505

RESUMEN

Electron beam lithography uses an accelerated electron beam to fabricate patterning on an electron-beam-sensitive resist but requires complex dry etching or lift-off processes to transfer the pattern to the substrate or film on the substrate. In this study, etching-free electron beam lithography is developed to directly write a pattern of various materials in all-water processes, achieving the desired semiconductor nanopatterns on a silicon wafer. Introduced sugars are copolymerized with metal ions-coordinated polyethylenimine under the action of electron beams. The all-water process and thermal treatment result in nanomaterials with satisfactory electronic properties, indicating that diverse on-chip semiconductors (e.g., metal oxides, sulfides, and nitrides) can be directly printed on-chip by an aqueous solution system. As a demonstration, zinc oxide patterns can be achieved with a line width of 18 nm and a mobility of 3.94 cm2 V-1 s-1. This etching-free electron beam lithography strategy provides an efficient alternative for micro/nanofabrication and chip manufacturing.

7.
Nanoscale Res Lett ; 17(1): 115, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478063

RESUMEN

The development of atomically thin single crystal films is necessary to potential applications in the 2D semiconductor field, and it is significant to explore new physical properties in low-dimensional semiconductors. Since, zero-dimensional (0D) materials without natural layering are connected by strong chemical bonds, it is challengeable to break symmetry and grow 0D Cs3BiX6 (X = Br, Cl) single crystal thin films. Here, we report the successful growth of 0D Cs3BiX6 (X = Br, Cl) single crystal films using a solvent evaporation crystallization strategy. Their phases and structures are both well evaluated to confirm 0D Cs3BiX6 (X = Br, Cl) single crystal films. Remarkably, the chemical potential dependent morphology evolution phenomenon is observed. It gives rise to morphology changes of Cs3BiBr6 films from rhombus to hexagon as BiBr3 concentration increased. Additionally, the robust second harmonic generation signal is detected in the Cs3BiBr6 single crystal film, demonstrating the broken symmetry originated from decreased dimension or shape change.

8.
Nanotechnology ; 33(40)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35617939

RESUMEN

Traditional inorganic oxide ferroelectric materials usually have band gaps above 3 eV, leading to more than 80% of the solar spectrum unavailable, greatly limiting the current density of their devices just atµA cm-2level. Therefore, exploring ferroelectric materials with lower band gaps is considered as an effective method to improve the performance of ferroelectric photovoltaic devices. Inorganic ferroelectric materials are often doped with transition metal elements to reduce the band gap, which is a complex doping and high temperature fabrication process. Recently, molecular ferroelectric materials can change the symmetry and specific interactions of crystals at the molecular level by chemically modifying or tailoring cations with high symmetry, enabling rational design and banding of ferroelectricity in the framework of perovskite simultaneously. Therefore, the molecular ferroelectric materials have a great performance for both excellent ferroelectricity and narrow band gap without doping. Here, we report a ferroelectric photovoltaic device employing an organic-inorganic hybrid molecular ferroelectric material with a band gap of 2.3 eV to obtain high current density. While the poor film quality of molecular ferroelectrics still limits it. The Lewis acid-base adduct is found to greatly improve the film quality with lower defect density and higher carrier mobility. Under standard AM 1.5 G illumination, the photocurrents of ∼1.51 mA cm-2is achieved along with a device efficiency of 0.45%. This work demonstrates new possibilities for the application of molecular ferroelectric films with narrow band gaps in photovoltaic devices, and lays a foundation for Lewis acid-base chemistry to improve the quality of molecular ferroelectric thin films to obtain high current densities and device performance.

9.
Angew Chem Int Ed Engl ; 61(25): e202202177, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35383399

RESUMEN

Enhancing the built-in electric field to promote charge dynamitic process is of great significance to boost the performance of the non-fullerene organic solar cells (OSCs), which has rarely been concerned. In this work, we introduced a cheap ferroelectric polymer as an additive into the active layers of non-fullerene OSCs to improve the device performance. An additional and permanent electrical field was produced by the polarization of the ferroelectric dipoles, which can substantially enhance the built-in electric field. The promoted exciton separation, significantly accelerated charge transport, reduced the charge recombination, as well as the optimized film morphology were observed in the device, leading to a significantly improved performance of the PVDF-modified OSCs with various active layers, such as PM6 : Y6, PM6 : BTP-eC9, PM6 : IT-4F and PTB7-Th : Y6. Especially, a record efficiency of 17.72 % for PM6 : Y6-based OSC and an outstanding efficiency of 18.17 % for PM6 : BTP-eC9-based OSC were achieved.

10.
Environ Sci Pollut Res Int ; 29(25): 37685-37699, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066826

RESUMEN

Ni-Co bimetallic catalysts supported on coconut shell activated carbon are synthesized using solid-phase method and investigated for dry reforming of methane, to explore the impact of Ni:Co ratio on the catalyst activity and stability. The catalyst performances are evaluated under the temperature varying from 600 to 900 °C and gas hourly space velocity (GHSV) of 7200 mL/h·g-cat. The characterization results show that metal nanoparticles are produced on the support, and the bimetallic catalyst with an explicit Ni:Co ratio (2:1) is the most beneficial for metal particle dispersion and acquires the minimum particle size of 4.41 nm. The bimetallic catalysts with an explicit Ni:Co ratio of 1:2 and 1:1 exhibit a synergistic effect towards the conversions of CH4 and CO2, respectively. The experimental results reveal that the highest CH4 and CO2 conversions rise to 94.0% and 97.5% within 12 h at 900 °C on average, respectively, assisted with the two bimetallic catalysts. The intensity of disordered carbon and thermal stability are enhanced with the extension of reforming process, contributing to a long-term catalytic stability. Besides, no obvious carbon deposition is detected, leading to a highly catalytic stability for the bimetallic catalysts.


Asunto(s)
Carbón Orgánico , Metano , Dióxido de Carbono , Cocos , Níquel
11.
Nanoscale Res Lett ; 17(1): 6, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34989901

RESUMEN

A dopant-free hole transport layer with high mobility and a low-temperature process is desired for optoelectronic devices. Here, we study a metal-organic framework material with high hole mobility and strong hole extraction capability as an ideal hole transport layer for perovskite solar cells. By utilizing lifting-up method, the thickness controllable floating film of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 at the gas-liquid interface is transferred onto ITO-coated glass substrate. The Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 film demonstrates high compactness and uniformity. The root-mean-square roughness of the film is 5.5 nm. The ultraviolet photoelectron spectroscopy and the steady-state photoluminescence spectra exhibit the Ni3(HITP)2 film can effectively transfer holes from perovskite film to anode. The perovskite solar cells based on Ni3(HITP)2 as a dopant-free hole transport layer achieve a champion power conversion efficiency of 10.3%. This work broadens the application of metal-organic frameworks in the field of perovskite solar cells.

12.
Small ; 18(3): e2103881, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34816558

RESUMEN

Morre's law is coming to an end only if the memory industry can keep stuffing the devices with new functionality. Halide perovskite acts as a promising candidate for application in next-generation nonvolatile memory. As is well known, the switching ratio is the key device requirement of resistive memory to improve recognition accuracy. Here, the authors introduce an all-inorganic halide perovskite CsPbBr3 single crystal film (SCF) into resistive memory as an active layer. The Ag/CsPbBr3 /Ag memory cells exhibit reproducible resistive switching with an ultrahigh switching ratio (over 109 ) and a fast switching speed (1.8 µs). It is studied that the Schottky barrier of metal/CsPbBr3 SCF contact follows the tendency of Schottky-Mott theory, and the Fermi level pinning effect is effectively reduced. The interface S parameter of metal/CsPbBr3 SCF contact is 0.50, suggesting a great interface contact is formed. The great interface contact contributes to the steady high resistance state (HRS), and then the steady HRS leads to an ultrahigh resistive switching ratio. This work demonstrates high performance from halide perovskite SCF-based memory. The introduction of halide perovskite SCF in resistive random access memory provides great potential as an alternative in future computing systems.

13.
Angew Chem Int Ed Engl ; 60(47): 25020-25027, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34534391

RESUMEN

Adding ferromagnetism into semiconductors attracts much attentions due to its potential usage of magnetic spins in novel devices, such as spin field-effect transistors. However, it remains challenging to stabilize their ferromagnetism above room temperature. Here we introduce an atomic chemical-solution strategy to grow wafer-size NiO thin films with controllable thickness down to sub-nanometer scale (0.92 nm) for the first time. Surface lattice defects break the magnetic symmetry of NiO and produce surface ferromagnetic behaviors. Our sub-nanometric NiO thin film exhibits the highest reported room-temperature ferromagnetic behavior with a saturation magnetization of 157 emu/cc and coercivity of 418 Oe. Attributed to wafer size, the easily-transferred NiO thin film is further verified in a magnetoresistance device. Our work provides a sub-nanometric platform to produce wafer-size ferromagnetic NiO thin films as atomic layer magnetic units in future transparent magnetoelectric devices.

14.
J Am Chem Soc ; 143(33): 13314-13324, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34375083

RESUMEN

Molybdenum ditelluride (MoTe2) has attracted ever-growing attention in recent years due to its novel characteristics in spintronics and phase-engineering, and an efficient and convenient method to achieve large-area high-quality film is an essential step toward electronic applications. However, the growth of large-area monolayer MoTe2 is challenging. Here, for the first time, we achieve the growth of a centimeter-sized monoclinic MoTe2 monolayer and manifest the mechanism of immobilized precursor particle driven growth. Microscopic characterizations reveal an obvious trend of immobilized precursor particles being consumed by the monolayer and continuing to provide a source for the growth of the monolayer. Time-of-flight secondary ion mass spectrometry verifies the attachment of hydroxide ions on the surface of the MoTe2 monolayer, thereby realizing the inhibition of crystal growth along the [001] zone axis and the continuous growth of the MoTe2 monolayer. The first-principles DFT calculations prove the mechanism of immobilized precursor particles and the absorption of hydroxide ions on the MoTe2 monolayer. The as-grown MoTe2 monolayer exhibits a surface roughness of 0.19 nm and average conductivity of 1.5 × 10-5 S/m, which prove the smoothness and uniformity of the MoTe2 monolayer. Temperature-dependent electrical measurements together with the transfer characteristic curves further demonstrate the typical semimetallic properties of monoclinic MoTe2. Our research elaborates the microscopic process of immobilized precursor particles to grow large-area MoTe2 monolayer and provides a new thinking about the growth of many other two-dimensional materials.

15.
Nanoscale Res Lett ; 16(1): 123, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34331611

RESUMEN

Monolayer transition metal dichalcogenides (TMDs) show promising potential for next-generation optoelectronics due to excellent light capturing and photodetection capabilities. Photodetectors, as important components of sensing, imaging and communication systems, are able to perceive and convert optical signals to electrical signals. Herein, the large-area and high-quality lateral monolayer MoS2/WS2 heterojunctions were synthesized via the one-step liquid-phase chemical vapor deposition approach. Systematic characterization measurements have verified good uniformity and sharp interfaces of the channel materials. As a result, the photodetectors enhanced by the photogating effect can deliver competitive performance, including responsivity of ~ 567.6 A/W and detectivity of ~ 7.17 × 1011 Jones. In addition, the 1/f noise obtained from the current power spectrum is not conductive to the development of photodetectors, which is considered as originating from charge carrier trapping/detrapping. Therefore, this work may contribute to efficient optoelectronic devices based on lateral monolayer TMD heterostructures.

17.
Environ Sci Pollut Res Int ; 28(36): 50813-50824, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33969454

RESUMEN

To overcome water instability and low photocatalytic activity of lead-free halide perovskite for the degradation of organic dyes, we report a novel photocatalyst of lead-free halide perovskite with Na incorporation and employ it for the photocatalytic degradation of organic dyes in water solution under visible light irradiation. The main purpose of this work is to confirm the feasibility of lead-free halide perovskite with Na incorporation for improving the photocatalytic efficiency and recyclability in water solution and further to explore the mechanism behind the enhancement of photocatalytic performance after Na incorporation. The results show that Cs2Ag0.60Na0.40InCl6 can increase the dye degradation rate by at least 50% than the lead-free halide perovskite (Cs2AgInCl6) and the photocatalyst of Ag substituted by Na (Cs2NaInCl6). The degradation efficiency of rhodamine 6G catalyzed by Cs2Ag0.60Na0.40InCl6 reaches 94.94% over 60 min, which is 72% higher than that catalyzed by Cs2NaInCl6 and 27% higher than that catalyzed by Cs2AgInCl6. What's more, the degradation efficiency of methyl orange catalyzed by Cs2Ag0.60Na0.40InCl6 is 90.39% within 150 min, which is 66% higher than that catalyzed by Cs2NaInCl6 and 54% higher than that catalyzed by Cs2AgInCl6. Moreover, the photocatalyst of Cs2Ag0.60Na0.40InCl6 exhibits a desirable recyclability by water exposure, retaining the degradation efficiency over 90% after five cycles. The strengthened photocatalytic performance in the presence of Cs2Ag0.60Na0.40InCl6 is ascribed to an increase of radiative recombination rate and an improvement of average lifetime to 204 ns since an appropriate Na incorporation at the atomic ratio of Na/Ag=4:6 breaks the original crystal lattice and meanwhile increases the electron and hole overlap. The work proves a great potential of halide perovskite with Na incorporation for the highly efficient photocatalytic degradation of organic dyes in water solution.


Asunto(s)
Colorantes , Titanio , Compuestos de Calcio , Catálisis , Colorantes/análisis , Óxidos , Agua
18.
ACS Nano ; 15(2): 3098-3107, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33576601

RESUMEN

The construction of aqueous Zn-ion hybrid capacitors (ZICs) reconciling high energy/power density is practically meaningful yet remains a grand challenge. Herein, a high-capacitance and long-life ZIC is demonstrated by 3D printing of a Ti3C2 MXene cathode, affording optimized carrier transport, facile electrolyte penetration, and ample porosity. The 3D-printable additive-free MXene ink with desirable rheological property is derived by a fast gelation process employing a trace amount of divalent cations, which overcomes the tedious post-treatments required for additive removal. The thus-fabricated 3D-printed (3DP) MXene cathode results in a dual-ion storage mechanism to synergize pseudocapacitive behavior of H+ and electrical double-layer capacitive behavior of Zn2+, which is systematically probed by a wide suite of in situ/ex situ electroanalytic characterizations. The 3DP MXene cathode accordingly exhibits a favorable areal capacitance of 1006.4 mF cm-2 at 0.38 mA cm-2 and excellent rate capability (184.4 F g-1 at 10 A g-1), outperforming the state-of-the-art ZICs. More impressively, ZIC full cells comprising a 3DP MXene cathode and a 3DP Zn anode deliver a competitive energy/power density of 0.10 mWh cm-2/5.90 mW cm-2 as well as an ultralong lifespan (86.5% capacity retention over 6000 cycles at 10 mA cm-2).

19.
Nat Commun ; 12(1): 318, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436627

RESUMEN

Carbon dioxide (CO2) is a problematic greenhouse gas, although its conversion to alternative fuels represents a promising approach to limit its long-term effects. Here, pyroelectric nanostructured materials are shown to utilize temperature-variations and to reduce CO2 for methanol. Layered perovskite bismuth tungstate nanoplates harvest heat energy from temperature-variation, driving pyroelectric catalytic CO2 reduction for methanol at temperatures between 15 °C and 70 °C. The methanol yield can be as high as 55.0 µmol⋅g-1 after experiencing 20 cycles of temperature-variation. This efficient, cost-effective, and environmental-friendly pyroelectric catalytic CO2 reduction route provides an avenue towards utilizing natural diurnal temperature-variation for future methanol economy.

20.
Nanotechnology ; 32(2): 025606, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32998117

RESUMEN

Recently, SnO2 is considered to be one of the most promising materials as electron transport layer in perovskite solar cells (PSCs). Low-temperature processed SnO2 films are crucial for SnO2-based PSCs and flexible devices. However, it is difficult to prepare stoichiometric SnO2 films by e-beam evaporation at low-temperature. Herein, SnO2 films are fabricated by oxygen plasma activated e-beam evaporation technique at room-temperature. Oxygen plasma shows strong oxidation activity, which is essential to adjust the stoichiometry of SnO x in the evaporation process. The SnO2 films exhibit uniformity (R q  = 3.05 nm), high transmittance (T > 90%), high hall mobility (µ e  = 10.8 cm2 V -1 s-1) and good hydrophilic (water contact angle =19°). This work will promote the application of SnO2 films in PSCs and flexible devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA