Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecol Lett ; 27(5): e14432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698727

RESUMEN

Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.


Asunto(s)
Microbiota , Modelos Biológicos , Microbiología del Suelo , Dinámica Poblacional , Plantas/microbiología , Suelo/química , Factores de Tiempo , Germinación
2.
Proc Biol Sci ; 290(2007): 20231217, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752843

RESUMEN

The relative arrival time of species can affect their interactions and thus determine which species persist in a community. Although this phenomenon, called priority effect, is widespread in natural communities, it is unclear how it depends on the length of growing season. Using a seasonal stage-structured model, we show that differences in stages of interacting species could generate priority effects by altering the strength of stabilizing and equalizing coexistence mechanisms, changing outcomes between exclusion, coexistence and positive frequency dependence. However, these priority effects are strongest in systems with just one or a few generations per season and diminish in systems where many overlapping generations per season dilute the importance of stage-specific interactions. Our model reveals a novel link between the number of generations in a season and the consequences of priority effects, suggesting that consequences of phenological shifts driven by climate change should depend on specific life histories of organisms.


Asunto(s)
Cambio Climático , Estaciones del Año
3.
Am Nat ; 202(2): 140-151, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37531275

RESUMEN

AbstractThe arrival order of species frequently determines the outcome of their interactions. This phenomenon, called the priority effect, is ubiquitous in nature and determines local community structure, but we know surprisingly little about how it influences biodiversity across different spatial scales. Here, we use a seasonal metacommunity model to show that biodiversity patterns and the homogenizing effect of high dispersal depend on the specific mechanisms underlying priority effects. When priority effects are driven only by positive frequency dependence, dispersal-diversity relationships are sensitive to initial conditions but generally show a hump-shaped relationship: biodiversity declines when dispersal rates become high and allow the dominant competitor to exclude other species across patches. When spatiotemporal variation in phenological differences alters species' interaction strengths (trait-dependent priority effects), local, regional, and temporal diversity are surprisingly insensitive to variation in dispersal, regardless of the initial numeric advantage. Thus, trait-dependent priority effects can strongly reduce the effect of dispersal on biodiversity, preventing the homogenization of metacommunities. Our results suggest an alternative mechanism that maintains local and regional diversity without environmental heterogeneity, highlighting that accounting for the mechanisms underlying priority effects is fundamental to understanding patterns of biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Estaciones del Año
4.
Trends Ecol Evol ; 38(12): 1203-1216, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37633727

RESUMEN

Priority effects play a key role in structuring natural communities, but considerable confusion remains about how they affect different ecological systems. Synthesizing previous studies, we show that this confusion arises because the mechanisms driving priority and the temporal scale at which they operate differ among studies, leading to divergent outcomes in species interactions and biodiversity patterns. We suggest grouping priority effects into two functional categories based on their mechanisms: frequency-dependent priority effects that arise from positive frequency dependence, and trait-dependent priority effects that arise from time-dependent changes in interacting traits. Through easy quantification of these categories from experiments, we can construct community models representing diverse biological mechanisms and interactions with priority effects, therefore better predicting their consequences across ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Fenotipo
5.
Glob Chang Biol ; 27(18): 4352-4366, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34060175

RESUMEN

Subalpine vegetation across the Tibetan Plateau is globally one of the most sensitive to climate change. However, the potential landscape-scale effects of climate change on subalpine forest dynamics remain largely unexplored. Here, we used a forest landscape model (LANDIS-II) coupled with a forest ecosystem process model (PnET-II) to simulate forest dynamics under future climate change in Jiuzhaigou National Nature Reserve in the eastern subalpine region of the Tibetan Plateau. We examined changes in the composition, distribution and aboveground biomass of cold temperate coniferous forests, temperate coniferous forests, deciduous broad-leaved forests and redwood forest under four climate change scenarios (RCP2.6, RCP4.5, RCP8.5 and the current climate) from 2016 to 2096. Our model predicts that by 2096, (i) cold temperate coniferous forests will expand and increase by 7.92%, 8.18%, 8.65% and 7.02% under current climate, RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively; (ii) distribution of forests as a whole shows upward elevational range shift, especially under RCP8.5 scenario and (iii) total aboveground biomass slowly increases at first and then decreases to 12%-16% of current distribution under RCPs. These results show that climate change can be expected to significantly influence forest composition, distribution and aboveground biomass in the subalpine forests of eastern Tibetan Plateau. This study is the first to simulate forest dynamics at the landscape scale in subalpine areas of the Tibetan Plateau, which provides an important step in developing more effective strategies of forest management for expected climate change, not only in China but also around the world.


Asunto(s)
Cambio Climático , Ecosistema , Biomasa , Bosques , Tibet
6.
PLoS One ; 14(12): e0224214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31856201

RESUMEN

Slag, waste from the steel-making process, contains large amounts of calcium, magnesium, iron and other heavy metals. Because of its composition, high pH and low water retention ability, slag is considered inhospitable to plants. Nevertheless, the spontaneously generated plant communities on slag are surprisingly diverse, but the assembly and structure of such communities are poorly studied. Previous studies suggest reduced rates of succession due to low growth rate and slow accumulation of topsoil. To investigate whether slag communities display similar patterns, we used two former industrial sites on the South Side of Chicago, IL, both with high pH (8-9.2) sand content (80%) and calcium concentration (> 9000 ppm). We removed all vegetation from both slag and non-slag plots to test whether recovery differed over one growing season (4 months). To directly assess plant growth, selected focal species were planted on both sites and harvested. We show that recovery from removal differed at slag and non-slag sites: the recruitment process on slag, measured by percent vegetative cover and number of species in plots, was significantly slower at 6-8 weeks of the manipulation and beyond, suggesting a potential stage-dependent effect of slag on plant growth. Certain slag plots recorded less cover than non-slag plots by >30% at maximum difference. Functional trait analysis found that graminoid and early successional species preferentially colonized slag. Overall, slag plots recovered more slowly from disturbance, suggesting a slow succession process that would hinder natural recovery. However, slag also has the potential to serve as plant refugia, hosting flora of analogous habitats native to the area: one of our industrial sites hosts nearly 80% native species with two species of highest Floristic Quality Index (10). Restoration efforts should be informed by the slow process of natural recovery, while post-industrial sites in urban areas serve as potential native plant refugia.


Asunto(s)
Residuos Industriales/análisis , Desarrollo de la Planta/fisiología , Suelo/química , Chicago , Ecosistema , Residuos Industriales/efectos adversos , Metales Pesados/análisis , Metales Pesados/química , Plantas
7.
Phys Chem Chem Phys ; 20(39): 25268-25274, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30276414

RESUMEN

A modulated and conventional DSC study of the transitions between the twist-bend nematic (Ntb), regular nematic (N) and isotropic liquid (Iso) phases was performed on a series of difluoroterphenyl-based dimers with (CH2)n spacers; n = 5, 7, 9, 11. The enthalpy of Ntb-N transition decreases steeply with increasing n, while that of the N-Iso transition increases with n; hence, the greatest effect of increasing n is a lowering N phase enthalpy. Based on past and present X-ray scattering experiments, we estimate the average molecular conformation in the Ntb phase and perform torsion energy calculations on the spacer. From this, the lowering enthalpy of the N phase is attributed to the decreasing torsional energy cost of bringing the two terphenyls from an inclined twisted conformation in the Ntb phase, to almost parallel in the N phase. With increasing n the C-C bonds of the spacers twist less away from their trans conformation, thereby reducing the overall torsion energy of the N phase. It is speculated that the nearly continuous nature of the Ntb-N transition in n = 11 dimer is associated with the divergence of the helical pitch toward infinity which is intercepted by a final jump at the very weak (0.01 J g-1) first-order transition. Small-angle X-ray scattering results suggest similar local cybotactic layering in both nematic phases, with four sublayers, i.e. tails, mesogens, spacers, mesogens.

8.
Soft Matter ; 14(16): 3003-3011, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29485649

RESUMEN

The main-chain liquid crystal (LC) copolyethers in which the nematic-nematic phase transition was first experimentally observed were revisited and re-characterised. Grazing incidence X-ray scattering revealed that the low-T nematic (Ntb) phase could be highly aligned by shearing, more so than in previously studied bent LC dimers. This was evidenced by a four-point wide-angle X-ray scattering pattern, which originates from convolution of two tilt distributions. Through intensity simulation the orientational order parameter associated with each of the distributions, as well as the conical angle of the Ntb phase, was calculated. Information regarding the polymer chain conformation was obtained using polarised infrared spectroscopy. The findings suggest the average conformation of the chains is a helix, and that the bend angle between mesogenic units is inversely related to temperature. All experimental evidence, including a jump in birefringence at the Ntb-nematic (N) phase transition, shows that copolyether samples mirror the behaviour of bent LC dimers over the transition. This confirms that the low-T nematic phase in copolyethers is indeed the same as that in LC dimers, now known to be the Ntb. The unusual broadening of transition peaks in complex heat capacity, obtained by modulated DSC experiments, is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA