Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202401751, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38436532

RESUMEN

CsPbI3 perovskite receives tremendous attention for photovoltaic applications due to its ideal band gap and good thermal stability. However, CsPbI3 perovskite solar cells (PSCs) significantly suffer from photovoltage deficits because of serious interfacial energy losses within the PSCs, which to a large extent affects the photovoltaic performance of PSCs. Herein, a dipolar chemical bridge (DCB) is constructed between the perovskite and TiO2 layers to lower interfacial energy losses and thus improve the charge extraction of PSCs. The results reveal that the DCB could form a beneficial interfacial dipole between the perovskite and TiO2 layers, which could optimize the interfacial energetics of perovskite/TiO2 layers and thus improve the energy level alignment within the PSCs. Meanwhile, the constructed DCB could also simultaneously passivate the surface defects of perovskite and TiO2 layers, greatly lowering interfacial recombination. Consequently, the photovoltage deficit of CsPbI3 PSCs is largely reduced, leading to a record efficiency of 21.86 % being realized. Meanwhile, the operation stability of PSCs is also largely improved due to the high-quality perovskite films with released interfacial tensile strain being obtained after forming the DCB within the PSCs.

2.
Front Vet Sci ; 9: 882754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812848

RESUMEN

In order to study the regulation of Fenugreek seed extract (FSE) on the immunity of broilers, and explore the appropriate amount of FSE in broilers' production, 1-day-old yellow feather broilers with a total of 420 birds were randomly allocated into seven treatments. Each treatment had six replicates, with 10 birds per replicate. The two control groups were the basic fodder group fed with basal diet and the bacitracin zinc group added 30 mg/kg bacitracin zinc to the basal diet. Experimental groups included five levels of FSE (50, 100, 200, 400, and 800 mg/kg FSE to the basal diet, respectively). The pre-test period was 7 days and the formal test lasted for 56 days. The results showed that the average daily gain (ADG) of 50 and 800 mg/kg FSE groups was significantly increased (P < 0.01), and the feed to gain ratio (F/G) of FSE groups was significantly decreased (P < 0.01) compared with the basic fodder and the bacitracin zinc groups. Compared with the basic fodder group, the serum total cholesterol (TC) content in the FSE groups was significantly decreased (P < 0.05), the serum low density lipoprotein cholesterol (LDL-C) content of 50, 100, and 800 mg/kg FSE groups was significantly lower than that of the basic fodder group (P < 0.05). Compared with the basic fodder and bacitracin zinc groups, the serum immunoglobulins (IgG, IgM, IgA) content of 100 and 200 mg/kg FSE groups were significantly increased (P < 0.05). Compared with the bacitracin zinc group, the serum interleukins (IL-1, IL-10) content of 400 mg/kg FSE group were significantly increased (P ≤ 0.05), and the serum interferon-γ (IFN-γ) content of 100 and 200 mg/kg FSE groups was significantly increased (P < 0.05). Compared with the basic fodder group, the lower doses (0-400 mg/kg) of FSE had no significant effect on the mRNA expression of toll-like receptors 4/ myeloid differentiation factor 88/ nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathways (P > 0.05). The 800 mg/kg FSE treatment group significantly increased the expression levels of nuclear factor-κB (NF-κB) mRNA in the spleen of broilers (P < 0.05). The zinc bacitracin group significantly increased the expression levels of myeloid differentiation factor 88 (MyD88) and nuclear factor-κB (NF-κB) mRNA (P ≤ 0.05). The results showed that FSE could promote the secretion of immunoglobulins, regulate the body's cytokines, and have a positive effect on immunity in broilers. Furthermore, the recommended supplement of FSE is 100 mg/kg in the broiler diet.

3.
Colloids Surf B Biointerfaces ; 122: 559-565, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25127362

RESUMEN

Biodegradable and bioactive nanocomposite (NC) biomaterials with controlled microstructures and able to deliver special drugs have gained increasing attention in bone tissue engineering. In this study, the hydroxyapatite (HAp)/poly(l-lactic acid) (PLLA) NC scaffolds were facilely prepared using solvent evaporation from templating Pickering emulsions stabilized with PLLA-modified HAp (g-HAp) nanoparticles. Then, in vitro mineralization experiments were performed in a simulated body fluid (SBF) to evaluate the bioactivity of the NC scaffolds. Moreover, in vitro drug release of the NC scaffolds using anti-inflammatory drug (ibuprofen, IBU) as the model drug was also investigated. The results showed that the NC scaffolds possessed interconnected pore structures, which could be modulated by varying the g-HAp nanoparticle concentration. The NC scaffolds exhibited excellent bioactivity, since they induced the formation of calcium-sufficient, carbonated apatite nanoparticles on the scaffolds after mineralization in SBF for 3 days. The IBU loaded in the NC scaffolds showed a sustained release profile, and the release kinetic followed the Higuchi model with diffusion process. Thus, solvent evaporation based on Pickering emulsion droplets is a simple and effective method to prepare biodegradable and bioactive porous NC scaffolds for bone repair and replacement applications.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Durapatita/química , Emulsiones , Ibuprofeno/farmacocinética , Ácido Láctico/química , Minerales/química , Nanocompuestos , Polímeros/química , Andamios del Tejido , Antiinflamatorios no Esteroideos/administración & dosificación , Ibuprofeno/administración & dosificación , Microscopía Electrónica de Rastreo , Poliésteres , Difracción de Rayos X
4.
Macromol Rapid Commun ; 35(16): 1414-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24921950

RESUMEN

Rattle-like polymer capsules with multicores in one shell are facilely fabricated by oil-in-water Pickering emulsion polymerization for the first time. The oil phase contains hydrophobic silica nanoparticles dispersed in polymerizable monomer, styrene, and unpolymerizable solvent, hexadecane. The multicore rattle-like capsules are facilely produced after the polymerization of monomers in the oil droplets. The key point of this one-pot method lies in the nucleation of hydrophobic silica and the phase separation between the resulting polystyrene and hexadecane. The influences of the contents of silica, hexadecane, cross-linker, and stabilizer on the structure and morphology of rattle-like capsules are systematically investigated. Moreover, functionalization of the rattle-like capsules can be developed easily by varying hydrophobic nucleation nanoparticles in the oil phase. This work opens up a new route to fabricate multilevel capsules or spheres.


Asunto(s)
Cápsulas/química , Nanopartículas/química , Alcanos/química , Reactivos de Enlaces Cruzados/química , Emulsiones/química , Interacciones Hidrofóbicas e Hidrofílicas , Aceites/química , Polimerizacion , Poliestirenos/química , Dióxido de Silicio/química
5.
Langmuir ; 28(30): 11017-24, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22762435

RESUMEN

Chitosan without hydrophobic modification is not a good emulsifier itself. However, it has a pH-tunable sol-gel transition due to free amino groups along its backbone. In the present work, a simple reversible Pickering emulsion system based on the pH-tunable sol-gel transition of chitosan was developed. At pH > 6.0, as adjusted by NaOH, chitosan was insoluble in water. Chitosan nanoparticles or micrometer-sized floccular precipitates were formed in situ. These chitosan aggregates could adsorb at the interface of oil and water to stabilize the o/w emulsions, so-called Pickering emulsions. At pH < 6.0, as adjusted by HCl, chitosan was soluble in water. Demulsification happened. Four organic solvents (liquid paraffin, n-hexane, toluene, and dichloromethane) were chosen as the oil phase. Reversible emulsions were formed for all four oils. Chitosan-based Pickering emulsions could undergo five cycles of emulsification-demulsification with only a slight increase in the emulsion droplet size. They also had good long-term stability for more than 2 months. Herein, we give an example of chitosan without any hydrophobic modification to act as an effective emulsifier for various oil-water systems. From the results, we have determined that natural polymers with a stimulus-responsive sol-gel transition should be a good particulate emulsifier. The method for in situ formation of pH-responsive Pickering emulsions based on chitosan will open up a new route to the preparation of a wide range of reversible emulsions.


Asunto(s)
Quitosano/química , Emulsiones/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
6.
Colloids Surf B Biointerfaces ; 91: 97-105, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22088755

RESUMEN

This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells.


Asunto(s)
Materiales Biocompatibles , Emulsiones , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA