RESUMEN
The burgeoning world population is exerting immense pressure on the agricultural sector to increase yield production, which has resulted in the widespread use of chemical products by farmers. However, these chemicals can have detrimental effects on both human health and the environment. To mitigate these risks, it is crucial to identify natural solutions that are less harmful to both humans and the environment. This study explores the impact of Atriplex halimus extract on the growth of Vicia faba L. broad vetch plants by testing three different concentrations (0.1%, 0.25%, and 0.5%) of the extract. The findings reveal that Atriplex halimus extract has a positive effect on various physiological and biochemical parameters of the plants, which ultimately leads to improved growth. Specifically, the treated plants displayed a significant (p < 0.05) increase in the content of plant metabolites and photosynthetic pigments. Furthermore, the extract enhanced the activity of enzymes that are involved in carbon-nitrogen assimilation, such as phosphoenolpyruvate carboxylase (EC 4.1.1.31), isocitrate dehydrogenase (EC 1.1.1.42), glutamine synthase (EC 6.3.1.2), glutathione-s-transferase (EC 2.5.1.18), and glutathione reductase (EC 1.8.1.7). The most significant improvement was observed in plants treated with 0.25% of Atriplex halimus extract. Therefore, it can be inferred that the application of Atriplex halimus extract has the potential to be an effective biostimulant for improving the growth and yield of faba bean plants.
RESUMEN
Cadmium (Cd) is one of the dangerous factors that have negative impacts on plants and human health. Recently, many researchers have been looking for biostimulants to use as bioprotectants that can help or ameliorate plants' tolerance against abiotic stress, including Cd. To test the dangerousness of Cd accumulated in the soil, 200 µM of the latter was applied to sorghum seeds at germination and maturation stages. At the same time, Atriplex halimus water extract (0.1%, 0.25%, 0.5%) was applied to test its efficacy on Cd alleviation in sorghum plants. The obtained results showed that the tested concentrations enhanced the tolerance of sorghum to Cd by enhancing the germination indexes parameters such as germination percentage (GP), seedling vigor index (SVI), and reducing the mean germination time (MGT) of sorghum seeds grown under cadmium stress. On the other hand, the morphological parameters (height and weight) as well as the physiological parameters (chlorophyll and carotenoid) were stimulated in treated maturated sorghum plants under Cd stress. In addition, 0.5% and 0.25% of Atriplex halimus extract (AHE) stimulated the antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase, and glutathione reductase. In the same time, an increase in carbon-nitrogen enzymes was recorded in the case of AHE treatment; phosphoenol pyruvate carboxylase, glutamine synthase, glutamate dehydrogenase, and amino acid transferase were all upregulated. These results suggest that using AHE as a biostimulant could be a better strategy to enhance the tolerance of sorghum plants to Cd stress.
Asunto(s)
Germinación , Sorghum , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Plantones/metabolismo , Sorghum/metabolismo , Transferasas/metabolismoRESUMEN
Diabetes and its complications are closely correlated with chronic hyperglycemia, causing severe oxidative stress and leading to glycation reaction with formation of advanced glycation end products. However, medicinal plants are still a source of inspiration for the discovery of new treatments of several diseases, including diabetes. The present study was aimed to evaluate the antioxidant and antidiabetic properties of Oxalis pes-caprae flowers extract in alloxan-induced diabetic mice. The phytochemical and antioxidant activities of both aqueous and methanolic extracts were assessed by in-vitro testing such as free radical scavenging assays (DPPH and ABTS+), ferrous ions (Fe2+) chelating activity and reducing power assay. Additionally, the detection of Amadori products and advanced glycation end products was used to determine the antiglycation potential. α-glucosidase and α-amylase inhibitory assessment was employed to determine the antidiabetic effect, while alloxan-induced diabetic mice were used to measure the in-vivo activities of antioxidants and carbohydrates enzymes. The effect of the methanolic extract on body weight and blood glucose level of extract-treated diabetic mice were also investigated. Among the tested extract, the methanolic extract was the richest in phenolic compounds which is directly related with their remarkable antioxidant, enzyme inhibitory and antiglycation activity. The oral administration of the two doses of Oxalis pes-caprae flowers (150 mg/kg and 250 mg/kg) daily for 3 weeks resulted in hypoglycemic effect compared to the reference drug, glibenclamide (10 mg/kg). Furthermore, the extract was shown to significantly increase the activities of antioxidants and glycolysis enzymes in the liver, kidney and spleen of diabetic mice, compared to diabetic control group. Therefore, Oxalis pes-caprae extract effectively exhibited hypoglycemic and antidiabetic effects as indicated by in-vitro and in-vivo studies, confirming the protective effects on hyperglycemia and oxidative damage.
Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Ratones , Animales , Antioxidantes/uso terapéutico , alfa-Glucosidasas , Aloxano , alfa-Amilasas , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hiperglucemia/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Productos Finales de Glicación AvanzadaRESUMEN
Natural compounds are endowed with a broad spectrum of biological activities, including protection against Toxins. Most of them are known for their antioxidant and radical scavenging activities. However, the synergistic combination of these natural molecules is not well studied. Therefore, the present study aims first to investigate the effect of four potent natural molecules [rosmarinic acid (Ros-A), ellagic acid (Ella-A), curcumin (Cur), and syringic acid (Syr-A)] on H2O2 -induced cell cytotoxicity and oxidative stress on the human monocytes (THP-1) and then to evaluate their combined action effect. Optimal combinations of these molecules were predicted using an augmented mixture design approach. In the first, as preliminary antioxidant activities screening, two in vitro assays were adopted to assess the single radicals scavenging activity of these natural compounds, DPPH⢠and ABTS⢠+ tests. Based on the results obtained, the multitude of optimal formulas proposed by the mixture design study led to choosing four potent compositions (comp) in addition to ellagic acid, proposed as the most efficient when applied alone. The different molecules and mixtures were used to assess their cytoprotective effect on THP-1 cells in the presence and absence of H2O2. The most potent Comp-4, as well as the molecules forming this mixture, were exploited in a second experiment, aiming to understand the effect on oxidative stress via antioxidant enzyme activities analysis in the H2O2-induced oxidative stress in the THP-1 cell line. Interestingly, the natural molecules used for THP-1 cells treatment exhibited a significant increase in the antioxidant defense and glyoxalase system as well as suppression of ROS generation evaluated as MDA content. These results indicate that the natural compounds tested here, especially the synergistic effect of Cur and Ros-A (Comp-4), could serve as cytoprotective and immunostimulant agents against H2O2-induced cytotoxicity THP-1 cells, which makes them interesting for further investigations on the molecular mechanisms in preclinical animal models.
RESUMEN
The main aim of the current study was to investigate the role of Cistus salviifolius leaves extract (CSE) in alleviating the toxic effect of cadmium (Cd) in sorghum (Sorghum bicolor) plants. The plants exposed to Cd (200 µM) exhibited limited growth, reduced biomass, and chlorophyll content compared to unstressed ones. Nevertheless, supplementation of CSE restored the negative effect of Cd and increased biomass and pigment content. CSE also increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), isocitrate dehydrogenase (ICDH), glutathione peroxidase (GPx), glutathione reductase (GR), and Glutathione-S-Transferase (GST). Furthermore, supplementation of CSE decreased lipid peroxidation and further increased the content of soluble sugar and amino acid. We also found that CSE has a promising effect in modulating the perturbations of carbon and nitrogen metabolism in sorghum plants under Cd stress by examining several carbon-nitrogen enzyme activities: phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (NAD-MDH), glutamine synthase (GS), glutamate dehydrogenase (GDH), and aspartate aminotransferase (AAT). Overall, our results confirm that the application of CSE can be a promising mechanism to overcome the negative effects of Cd stress in sorghum plants.
RESUMEN
Salinity is a severe abiotic problem that has harmful impacts on agriculture. Recently, biostimulants were defined as bioprotectant materials that promote plant growth and improve productivity under various stress conditions. In this study, we investigated the effect of Crataegus oxyacantha extract as a biostimulant on tomato plants (Solanum lycopersicum) grown under salt stress. Concentrations of 20 mg/L, 30 mg/L, and 70 mg/L of C. oxyacantha extract were applied to tomato plants that were grown under salt stress. The results indicated that plants that were treated with C. oxyacantha extract had a higher ability to tolerate salt stress, as demonstrated by a significant (p < 0.05) increase in plant growth and photosynthetic pigment contents, in addition to a significant increase in tomato soluble sugars and amino acids compared to the control plants. In the stressed tomato plants, malondialdehyde increased and then decreased significantly with the different concentrations of C. oxyacantha extract. Furthermore, there was a significant improvement in the antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and glutathione reductase (GR) in the stressed plants, especially after treatment with 70 mg/L of the extract. Overall, our results suggest that C. oxyacantha extract could be a promising biostimulant for treating tomato plants under salinity stress.
RESUMEN
Sorghum, the fifth most important cereal crop, is a well-adapted cereal to arid/semi-arid regions. Sorghum is known for multiple end-uses as food, feed, fuel, forage, and as source of bioactive compounds that could be used for medical applications. Although the great improvement in the process of sorghum breeding, the average yield of this crop is still very low. Therefore, exploring the genetic diversity in sorghum accessions is a critical step for improving this crop. The main objective of the current work was to study the genetic variation existing in a Moroccan sorghum collection. Indeed, 10 sorghum ecotypes were characterized based on agromorphological descriptors. Both quantitative (25) and qualitative (7) traits revealed variability (p < 0.05) among the studied ecotypes. At the seedling stage, most of the ecotypes showed good to high vigor (70%). However, as the sorghum plants grow, the difference between genotypes become more apparent, especially at the generative phase. For instance, three different panicle shapes have been observed, erect (50%), semi-bent (30%), and bent (20%) with different degree of compactness (20% for loose, semi-compact, and compact panicles, and 30% for semi-loose panicles). In another part of this study, the phytochemical composition and antioxidant activities of the sorghum ecotypes have been determined. The results showed variable total phenolic contents, and total flavonoid contents ranging from 125.86 ± 1.36 to 314.91 ± 3.60 mg GAE/g dw and 114.0 ± 13.2 to 138.5 ± 10.8 (mg catechin equivalent/100 g, dw) respectively, with a differential antioxidant activities as well. These results indicate that for any crop breeding program, it is preferable to take into consideration both morphological and biochemical traits for a better selection of high yielding varieties with high added value compounds. Therefore, the implication of these results in the context of sorghum breeding activities could be a resourceful option for farmers.
Asunto(s)
Sorghum , Antioxidantes/análisis , Ecotipo , Grano Comestible/genética , Variación Genética , Fitoquímicos , Fitomejoramiento , Sorghum/química , Sorghum/genéticaRESUMEN
This work focused on the leaves of Dittrichia viscosa, a plant used in Mediterranean folk medicine. Compared to water extract, the methanolic extract had higher antioxidant effects. Moreover, this extract showed potent in vitro inhibitory activity against α-amylase and α-glucosidase and showed an interesting antiglycation effect. Additionally, the evaluation of the cytotoxic activity of the methanolic extract against two human breast cancer cell lines, MCF-7 and MDA-MB-468, was very promising, with no cytotoxicity towards normal cells (peripheral blood mononuclear cells (PBMCs). The antibacterial effect was also assessed and showed potent inhibitory activity against Proteus mirabilis and Bacillus subtilis. On the other hand, Dittrichia viscosa leaves were rich in macro-elements containing appropriate micro-elements and high levels of phenolics and flavonoids such as caffeic acid derivatives. Taken together, the results obtained in this study indicate that Dittrichia viscosa could constitute a valuable source of bioactive molecules and could be used either on the preventive side or for therapeutic applications without toxicity.