RESUMEN
Deficient (d) DNA mismatch repair (MMR) is a biomarker predictive of better response to PD-1 blockade immunotherapy in solid tumors. dMMR can be caused by mutations in MMR genes or by protein inactivation, which can be detected by sequencing and immunohistochemistry, respectively. To investigate the role of dMMR in diffuse large B-cell lymphoma (DLBCL), MMR gene mutations and expression of MSH6, MSH2, MLH1, and PMS2 proteins were evaluated by targeted next-generation sequencing and immunohistochemistry in a large cohort of DLBCL patients treated with standard chemoimmunotherapy, and correlated with the tumor immune microenvironment characteristics quantified by fluorescent multiplex immunohistochemistry and gene-expression profiling. The results showed that genetic dMMR was infrequent in DLBCL and was significantly associated with increased cancer gene mutations and favorable immune microenvironment, but not prognostic impact. Phenotypic dMMR was also infrequent, and MMR proteins were commonly expressed in DLBCL. However, intratumor heterogeneity existed, and increased DLBCL cells with phenotypic dMMR correlated with significantly increased T cells and PD-1+ T cells, higher average nearest neighbor distance between T cells and PAX5+ cells, upregulated immune gene signatures, LE4 and LE7 ecotypes and their underlying Ecotyper-defined cell states, suggesting the possibility that increased T cells targeted only tumor cell subsets with dMMR. Only in patients with MYC¯ DLBCL, high MSH6/PMS2 expression showed significant adverse prognostic effects. This study shows the immunologic and prognostic effects of genetic/phenotypic dMMR in DLBCL, and raises a question on whether DLBCL-infiltrating PD-1+ T cells target only tumor subclones, relevant for the efficacy of PD-1 blockade immunotherapy in DLBCL.
Asunto(s)
Reparación de la Incompatibilidad de ADN , Linfoma de Células B Grandes Difuso , Microambiente Tumoral , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Reparación de la Incompatibilidad de ADN/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Masculino , Femenino , Mutación , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Adulto , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.
Asunto(s)
Colesterol , Ferroptosis , Homeostasis , Receptor Leucocitario Tipo Inmunoglobulina B1 , Mieloma Múltiple , Receptores de LDL , Humanos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/genética , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Ferroptosis/genética , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Animales , Línea Celular Tumoral , Ratones , Antígenos CDRESUMEN
BACKGROUND: Targeted immunotherapy with monoclonal antibodies (mAbs) is an effective and safe method for the treatment of malignancies. Development of mAbs with improved cytotoxicity, targeting new and known tumor-associated antigens, therefore continues to be an active research area. We reported that Dickkopf-1 (DKK1) is a good target for immunotherapy of human cancers based on its wide expression in different cancers but not in normal tissues. As DKK1 is a secreted protein, mAbs binding directly to DKK1 have limited effects on cancer cells in vivo. METHODS: The specificity and antibody-binding capacity of DKK1-A2 mAbs were determined using indirect ELISA, confocal imaging, QIFIKIT antibody-binding capacity and cell surface binding assays. The affinity of mAbs was determined using a surface plasmon resonance biosensor. A flow cytometry-based cell death was performed to detect tumor cell apoptosis. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were used to evaluate the ability of DKK1-A2 mAbs to mediate ADCC and CDC activities against tumor cells in vitro. Flow cytometry data were collected with an FACSymphony A3 cell analyzer and analyzed with FlowJo V.10.1 software. Human cancer xenograft mouse models were used to determine the in vivo therapeutic efficacy and the potential safety and toxicity of DKK1-A2 mAbs. In situ TUNEL assay was performed to detect apoptosis in tumors and mouse organs. RESULTS: We generated novel DKK1-A2 mAbs that recognize the DKK1 P20 peptide presented by human HLA-A*0201 (HLA-A2) molecules (DKK1-A2 complexes) that are naturally expressed by HLA-A2+DKK1+ cancer cells. These mAbs directly induced apoptosis in HLA-A2+DKK1+ hematologic and solid cancer cells by activating the caspase-9 cascade, effectively lysed the cancer cells in vitro by mediating CDC and ADCC and were therapeutic against established cancers in their xenograft mouse models. As DKK1 is not detected in most human tissues, DKK1-A2 mAbs neither bound to or killed HLA-A2+ blood cells in vitro nor caused tissue damage in tumor-free or tumor-bearing HLA-A2-transgenic mice. CONCLUSION: Our study suggests that DKK1-A2 mAbs may be a promising therapeutic agent to treat human cancers.
Asunto(s)
Antígeno HLA-A2 , Neoplasias , Humanos , Animales , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Péptidos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización IntercelularRESUMEN
Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.
Asunto(s)
Inmunoterapia Adoptiva , Leucemia Mieloide Aguda , Humanos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Leucemia Mieloide Aguda/patología , Receptores de Superficie Celular/metabolismo , Células Mieloides/metabolismo , Receptores Inmunológicos/metabolismo , Antígenos CD/metabolismoRESUMEN
PURPOSE: Tumor-infiltrating B lymphocytes (TIL-B) have demonstrated prognostic and predictive significance in solid cancers. In this study, we aimed to distinguish TIL-Bs from malignant B-cells in diffuse large B-cell lymphoma (DLBCL) and determine the clinical and biological significance. EXPERIMENTAL DESIGN: A total of 269 patients with de novo DLBCL from the International DLBCL R-CHOP Consortium Program were studied. Ultra-deep sequencing of the immunoglobulin genes was performed to determine B-cell clonotypes. The frequencies and numbers of TIL-B clonotypes in individual repertoires were correlated with patient survival, gene expression profiling (GEP) data, and frequencies of DLBCL-infiltrating immune cells quantified by fluorescent multiplex IHC at single-cell resolution. RESULTS: TIL-B abundance, evaluated by frequencies of normal B-cell clonotypes in the immunoglobulin repertoires, remarkably showed positive associations with significantly better survival of patients in our sequenced cohorts. DLBCLs with high versus low TIL-B abundance displayed distinct GEP signatures, increased pre-memory B-cell state and naïve CD4 T-cell state fractions, and higher CD4+ T-cell infiltration. TIL-B frequency, as a new biomarker in DLBCL, outperformed the germinal center (GC) B-cell-like/activated B-cell-like classification and TIL-T frequency. The identified TIL-B-high GEP signature, including genes upregulated during T-dependent B-cell activation and those highly expressed in normal GC B cells and T cells, showed significant favorable prognostic effects in several external validation cohorts. CONCLUSIONS: TIL-B frequency is a significant prognostic factor in DLBCL and plays a crucial role in antitumor immune responses. This study provides novel insights into the prognostic determinants in DLBCL and TIL-B functions with important therapeutic implications.
Asunto(s)
Linfocitos B , Linfoma de Células B Grandes Difuso , Humanos , Pronóstico , Linfocitos B/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Inmunidad , Inmunoglobulinas/metabolismoRESUMEN
Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML). However, MRD cannot be detected in many patients using current methods. We developed a highly sensitive 5-hydroxymethylcytosine (5hmC) signature in cell-free DNA by analyzing 115 AML patients and 86 controls. The 5hmC method detected MRD in 20 of 29 patients with negative MRD by multiparameter flow cytometry and 11 of 14 patients with negative MRD by molecular methods. MRD detection by the 5hmC method was significantly associated with relapse-free survival. This novel method can be used in most AML patients and may significantly impact AML patient management.
Asunto(s)
Ácidos Nucleicos Libres de Células , Leucemia Mieloide Aguda , Humanos , Metilación de ADN , 5-Metilcitosina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genéticaRESUMEN
Epigenetic abnormality is a hallmark of acute myeloid leukemia (AML), and aberrant 5-hydroxymethylcytosine (5hmC) levels are commonly observed in AML patients. As epigenetic subgroups of AML correlate with different clinical outcomes, we investigated whether plasma cell-free DNA (cfDNA) 5hmC could categorize AML patients into subtypes. We profiled the genome-wide landscape of 5hmC in plasma cfDNA from 54 AML patients. Using an unbiased clustering approach, we found that 5hmC levels in genomic regions with a histone mark H3K4me3 classified AML samples into three distinct clusters that were significantly associated with leukemia burden and survival. Cluster 3 showed the highest leukemia burden, the shortest overall survival of patients, and the lowest 5hmC levels in the TET2 promoter. 5hmC levels in the TET2 promoter could represent TET2 activity resulting from mutations in DNA demethylation genes and other factors. The novel genes and key signaling pathways associated with aberrant 5hmC patterns could add to our understanding of DNA hydroxymethylation and highlight the potential therapeutic targets in AML. Our results identify a novel 5hmC-based AML classification system and further underscore cfDNA 5hmC as a highly sensitive marker for AML.
Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , 5-Metilcitosina/metabolismoRESUMEN
Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls. We developed a 5hmC diagnostic model that precisely differentiates AML patients from controls with high sensitivity and specificity. We also developed a 5hmC prognostic model that accurately predicts prognosis in AML patients. High weighted prognostic scores (wp-scores) in AML patients were significantly associated with adverse overall survival (OS) in both training (P = 3.31e-05) and validation (P = 0.000464) sets. The wp-score was also significantly associated with genetic risk stratification and displayed dynamic changes with varied disease burden. Moreover, we found that high wp-scores in a single gene, BMS1 and GEMIN5 predicted OS in AML patients in both the training set (P = 0.023 and 0.031, respectively) and validation set (P = 9.66e-05 and 0.011, respectively). Lastly, our study demonstrated the genome-wide landscape of DNA hydroxymethylation in AML and revealed critical genes and pathways related to AML diagnosis and prognosis. Our data reveal plasma cfDNA 5hmC signatures as sensitive and accurate markers for AML diagnosis and prognosis. Plasma cfDNA 5hmC analysis will be an effective and minimally invasive tool for AML management.
Asunto(s)
Ácidos Nucleicos Libres de Células , Leucemia Mieloide Aguda , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Epigenómica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genéticaRESUMEN
Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB. MYCN amplification leads to glycerolipid accumulation by promoting fatty acid (FA) uptake and biosynthesis. We found that cells expressing amplified MYCN depend highly on FA uptake for survival. Mechanistically, MYCN directly upregulates FA transport protein 2 (FATP2), encoded by SLC27A2. Genetic depletion of SLC27A2 impairs NB survival, and pharmacological SLC27A2 inhibition selectively suppresses tumor growth, prolongs animal survival, and exerts synergistic anti-tumor effects when combined with conventional chemotherapies in multiple preclinical NB models. This study identifies FA uptake as a critical metabolic dependency for MYCN-amplified tumors. Inhibiting FA uptake is an effective approach for improving current treatment regimens.
Asunto(s)
Ácidos Grasos , Neuroblastoma , Animales , Línea Celular Tumoral , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismoRESUMEN
Gemcitabine is a chemotherapeutic used clinically to treat a variety of cancers. However, because it lacks tumor cell specificity, gemcitabine may cause off-target cytotoxicity and adversely impact patients. To impart cancer cell specificity to gemcitabine and improve its therapeutic efficacy, we synthesized a unique aptamer-drug conjugate that carries a high gemcitabine payload (three molecules) via a dendrimer structure and enzymatically cleavable linkers for controlled intracellular drug release. First, linker-gemcitabinedendrimer-linker-gemcitabine products were produced, which had significantly lower cytotoxicity than an equimolar amount of free drug. Biochemical analysis revealed that lysosomal cathepsin B protease rapidly cleaved the dendritic linkers and released the conjugated gemcitabine as a free drug. Subsequently, the dendrimer-linker-gemcitabine was coupled with a cell-specific aptamer to form aptamer-gemcitabine conjugates. Functional assays confirmed that, under aptamer guidance, aptamer-gemcitabine conjugates were selectively bound to and then internalized by triple-negative breast cancer cells. Cellular therapy studies indicated that the aptamer-gemcitabine conjugates potentiated cytotoxic activity to targeted cancer cells but did not affect off-target control cells. Our study demonstrates a novel approach to aptamer-mediated targeted drug delivery that combines a high drug payload and an enzymatically controlled drug release switch to achieve higher therapeutic efficacy and fewer off-target effects relative to free-drug chemotherapy.
RESUMEN
Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migration. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endoplasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitivity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.
Asunto(s)
Mieloma Múltiple , Inhibidores de Proteasoma , Apoptosis , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismoRESUMEN
Although targeted cancer therapy can induce higher therapeutic efficacy and cause fewer side effects in patients, the lack of targetable biomarkers on triple-negative breast cancer (TNBC) cells limits the development of targeted therapies by antibody technology. Therefore, we investigated an alternative approach to target TNBC by using the PDGC21T aptamer, which selectively binds to poorly differentiated carcinoma cells and tumor tissues, although the cellular target is still unknown. We found that synthetic aptamer probes specifically bound cultured TNBC cells in vitro and selectively targeted TNBC xenografts in vivo. Subsequently, to identify the target molecule on TNBC cells, we performed aptamer-mediated immunoprecipitation in lysed cell membranes followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Sequencing analysis revealed a highly conserved peptide sequence consistent with the cell surface protein CD49c (integrin α3). For target validation, we stained cultured TNBC and non-TNBC cells with an aptamer probe or a CD49c antibody and found similar cell staining patterns. Finally, competition cell-binding assays using both aptamer and anti-CD49c antibody revealed that CD49c is the biomarker targeted by the PDGC21T aptamer on TNBC cells. Our findings provide a molecular foundation for the development of targeted TNBC therapy using the PDGC21T aptamer as a targeting ligand.
RESUMEN
Multiple studies have demonstrated that diffuse large B-cell lymphoma (DLBCL) can be divided into subgroups based on their biology; however, these biological subgroups overlap clinically. Using machine learning, we developed an approach to stratify patients with DLBCL into four subgroups based on survival characteristics. This approach uses data from the targeted transcriptome to predict these survival subgroups. Using the expression levels of 180 genes, our model reliably predicted the four survival subgroups and was validated using independent groups of patients. Multivariate analysis showed that this patient stratification strategy encompasses various biological characteristics of DLBCL, and only TP53 mutations remained an independent prognostic biomarker. This novel approach for stratifying patients with DLBCL, based on the clinical outcome of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone therapy, can be used to identify patients who may not respond well to these types of therapy, but would otherwise benefit from alternative therapy and clinical trials.
Asunto(s)
Linfoma de Células B Grandes Difuso , Transcriptoma , Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Aprendizaje Automático , Prednisona/uso terapéutico , Pronóstico , Rituximab/uso terapéutico , Vincristina/uso terapéuticoRESUMEN
Immunoglobulin (Ig) is known as a hallmark of B-lymphocytes exerting antibody functions. However, our previous studies demonstrated that myeloblasts from acute myeloid leukemia (AML) patients could also express Ig with distinct roles. Here, we quantified Ig (IGHG and IGK) transcripts by real-time PCR and performed a comprehensive analysis of Ig repertoire (both heavy chains and light chains) in AML blasts. We found that Ig was frequently expressed by AML blasts. A higher level of AML-derived IGHG expression correlated with a significantly shorter disease-free survival. Next-generation sequencing revealed dysregulated transcripts of all five Ig classes (IGHA, IGHD, IGHE, IGHG, and IGHM) and two Ig types (IGK and IGL) in AML. VH-D-JH rearrangements in myeloblasts were biased with individual specificity rather than generally diverse as in B-cells. Compared to AML-derived IgH, AML-derived IGK was more conserved among different AML samples. The frequently shared Vκ-Jκ patterns were IGKV3-20*01/IGKJ1*01, IGKV2D-28*01/IGKJ1*01, and IGKV4-1*01/IGKJ1*01. Moreover, AML-derived IGK was different from classical IGK in B-cells for the high mutation rates and special mutation hotspots at serine codons. Findings of the distinct Ig repertoire in myeloblasts may facilitate the discovery of a new molecular marker for disease monitoring and target therapy.
RESUMEN
Triple-negative breast cancer is an aggressive subtype of breast cancer that is primarily treated using systemic chemotherapy due to the lack of a specific cell surface marker for drug delivery. Cancer cell-specific aptamer-mediated drug delivery is a promising targeted chemotherapy for marker-unknown cancers. Using a poorly differentiated carcinoma cell-specific DNA aptamer (PDGC21T), we formed a self-assembling circinate DNA nanoparticle (Apt21TNP) that binds triple-negative breast cancer cells. Using our previously designed pH-sensitive dendrimer-conjugated doxorubicin (DDOX) as the payload, we found that each nanoparticle loaded 30 doxorubicin molecules to form an Apt21TNP-DDOX nanomedicine that is stable in human plasma. Upon cell binding, Apt21TNP-DDOX is internalized by triple-negative breast cancer cells through the macropinocytosis pathway. Once inside cells, the low pH microenvironment in lysosomes induces doxorubicin drug payload release from Apt21TNP-DDOX. Our in vitro studies demonstrate that Apt21TNP-DDOX can preferentially bind triple-negative breast cancer cells to induce cell death. Furthermore, we show that Apt21TNP-DDOX can accumulate in subcutaneous MDA-MB-231 tumors in mice following systemic administration to reduce tumor burden, minimize side effects, and improve animal survival. Together, our results demonstrate that Apt21TNP-mediated doxorubicin delivery is a potent, targeted chemotherapy for triple-negative breast cancer that may alleviate side effects in patients.
Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas , Nanoestructuras , Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Doxorrubicina , Humanos , Ratones , Nanopartículas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Microambiente TumoralRESUMEN
PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is molecularly and clinically heterogeneous, and can be subtyped according to genetic alterations, cell-of-origin, or microenvironmental signatures using high-throughput genomic data at the DNA or RNA level. Although high-throughput proteomic profiling has not been available for DLBCL subtyping, MYC/BCL2 protein double expression (DE) is an established prognostic biomarker in DLBCL. The purpose of this study is to reveal the relative prognostic roles of DLBCL genetic, phenotypic, and microenvironmental biomarkers. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing; IHC for MYC, BCL2, and FN1; and fluorescent multiplex IHC for microenvironmental markers in a large cohort of DLBCL. We performed correlative and prognostic analyses within and across DLBCL genetic subtypes and MYC/BCL2 double expressors. RESULTS: We found that MYC/BCL2 double-high-expression (DhE) had significant adverse prognostic impact within the EZB genetic subtype and LymphGen-unclassified DLBCL cases but not within MCD and ST2 genetic subtypes. Conversely, KMT2D mutations significantly stratified DhE but not non-DhE DLBCL. T-cell infiltration showed favorable prognostic effects within BN2, MCD, and DhE but unfavorable effects within ST2 and LymphGen-unclassified cases. FN1 and PD-1-high expression had significant adverse prognostic effects within multiple DLBCL genetic/phenotypic subgroups. The prognostic effects of DhE and immune biomarkers within DLBCL genetic subtypes were independent although DhE and high Ki-67 were significantly associated with lower T-cell infiltration in LymphGen-unclassified cases. CONCLUSIONS: Together, these results demonstrated independent and additive prognostic effects of phenotypic MYC/BCL2 and microenvironment biomarkers and genetic subtyping in DLBCL prognostication, important for improving DLBCL classification and identifying prognostic determinants and therapeutic targets.
Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-myc/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Pronóstico , Proteómica , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Microambiente Tumoral/genéticaRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer comprised of cells that lack expression of targetable biomarkers. Nucleic acid aptamers are a group of molecular ligands that can specifically bind to their targets with high affinity. The ssDNA aptamer PDGC21-T recognizes poorly differentiated cancer cells and tumor tissues through an unidentified cell surface target(s). Because TNBC tumor cells are poorly differentiated, the aptamer PDGC21-T is a promising therapeutic candidate to target TNBC tumor cells. In vitro study revealed that synthetic aptamer probes selectively targeted TNBC cell lines. To assess aptamer immunotherapeutic targeting capability, we generated aptamer-engineered NK cells (ApEn-NK) using aptamer probes as a targeting ligand and NK cells as a therapeutic agent. Cell clustering formation assays revealed that ApEn-NK bound both suspended and adherent TNBC cells with high affinity. In a functional study, ApEn-NK treatment triggered apoptosis and death of cultured TNBC cells. Finally, systemic administration of ApEn-NK in mice harboring TNBC xenografts resulted in significant inhibition of lung metastasis relative to parental NK cell treatments. Unlike chemotherapy, ApEn-NK treatment did not affect body weight in treated mice. We demonstrate a novel approach for targeted TNBC immunotherapy.
Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Humanos , Inmunoterapia , Células Asesinas Naturales/metabolismo , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológicoRESUMEN
Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-ß response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.
Asunto(s)
Antineoplásicos/farmacología , Inmunidad Innata/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Oligopéptidos/farmacología , Receptores de Ácido Retinoico/agonistas , 2',5'-Oligoadenilato Sintetasa/inmunología , Línea Celular Tumoral , Endorribonucleasas/inmunología , Humanos , Receptores de Ácido Retinoico/inmunología , Células Tumorales Cultivadas , Receptor de Ácido Retinoico gammaRESUMEN
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.