Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Mater ; : e2403985, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318084

RESUMEN

Antiferroelectric oxides are promising materials for applications in high-density energy storage, solid-state cooling, and negative capacitance devices. However, the range of oxide antiferroelectrics available today is rather limited. In this work, it is demonstrated that antiferroelectric properties can be electrostatically engineered in artificially layered ferroelectric superlattices. Using a combination of synchrotron X-ray nanodiffraction, scanning transmission electron microscopy, macroscopic electrical measurements, and lateral and vertical piezoresponse force microscopy in parallel-plate capacitor geometry, a highly reversible field-induced transition is observed from a stable in-plane polarized state to a state with in-plane and out-of-plane polarized nanodomains that mimics, at the domain level, the nonpolar to polar transition of traditional antiferroelectrics, with corresponding polarization-voltage double hysteresis and comparable energy storage capacity. Furthermore, it is found that such superlattices exhibit large out-of-plane dielectric responses without involving flux-closure domain dynamics. These results demonstrate that electrostatic and strain engineering in artificially layered materials offers a promising route for the creation of synthetic antiferroelectrics.

2.
Nat Mater ; 21(11): 1252-1257, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36008605

RESUMEN

Ferroelectrics subject to suitable electric boundary conditions present a steady negative capacitance response1,2. When the ferroelectric is in a heterostructure, this behaviour yields a voltage amplification in the other elements, which experience a potential difference larger than the one applied, holding promise for low-power electronics3. So far research has focused on verifying this effect and little is known about how to optimize it. Here, we describe an electrostatic theory of ferroelectric/dielectric superlattices, convenient model systems4,5, and show the relationship between the negative permittivity of the ferroelectric layers and the voltage amplification in the dielectric ones. Then, we run simulations of PbTiO3/SrTiO3 superlattices to reveal the factors most strongly affecting the amplification. In particular, we find that giant effects (up to tenfold increases) can be obtained when PbTiO3 is brought close to the so-called 'incipient ferroelectric' state.


Asunto(s)
Electrónica , Electricidad Estática
3.
Adv Mater ; 34(15): e2106826, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35064954

RESUMEN

The combination of strain and electrostatic engineering in epitaxial heterostructures of ferroelectric oxides offers many possibilities for inducing new phases, complex polar topologies, and enhanced electrical properties. However, the dominant effect of substrate clamping can also limit the electromechanical response and often leaves electrostatics to play a secondary role. Releasing the mechanical constraint imposed by the substrate can not only dramatically alter the balance between elastic and electrostatic forces, enabling them to compete on par with each other, but also activates new mechanical degrees of freedom, such as the macroscopic curvature of the heterostructure. In this work, an electrostatically driven transition from a predominantly out-of-plane polarized to an in-plane polarized state is observed when a PbTiO3 /SrTiO3 superlattice with a SrRuO3 bottom electrode is released from its substrate. In turn, this polarization rotation modifies the lattice parameter mismatch between the superlattice and the thin SrRuO3 layer, causing the heterostructure to curl up into microtubes. Through a combination of synchrotron-based scanning X-ray diffraction imaging, Raman scattering, piezoresponse force microscopy, and scanning transmission electron microscopy, the crystalline structure and domain patterns of the curved superlattices are investigated, revealing a strong anisotropy in the domain structure and a complex mechanism for strain accommodation.

4.
Nat Mater ; 20(4): 495-502, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33398118

RESUMEN

Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3-SrRuO3 ferroelectric-metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m-1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.

5.
Nature ; 568(7752): 322-323, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30996308
6.
Phys Rev Lett ; 120(3): 037602, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400523

RESUMEN

Ferroelectric domains in PbTiO_{3}/SrTiO_{3} superlattices are studied using synchrotron x-ray diffraction. Macroscopic measurements reveal a change in the preferential domain wall orientation from {100} to {110} crystallographic planes with increasing temperature. The temperature range of this reorientation depends on the ferroelectric layer thickness and domain period. Using a nanofocused beam, local changes in the domain wall orientation within the buried ferroelectric layers are imaged, both in structurally uniform regions of the sample and near defect sites and argon ion-etched patterns. Domain walls are found to exhibit a preferential alignment with the straight edges of the etched patterns as well as with structural features associated with defect sites. The distribution of out-of-plane lattice parameters is mapped around one such feature, showing that it is accompanied by inhomogeneous strain and large strain gradients.

7.
J Phys Condens Matter ; 29(28): 284001, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28593933

RESUMEN

The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO3 films sandwiched between the most habitual perovskite electrodes, SrRuO3, on top of the most used perovskite substrate, SrTiO3. We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO3 capacitors. We show that even the high screening efficiency of SrRuO3 electrodes is still insufficient to stabilize polarization in SrRuO3/BaTiO3/SrRuO3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

8.
Nat Commun ; 7: 13017, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725665

RESUMEN

The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

9.
Nature ; 534(7608): 524-8, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27296225

RESUMEN

The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

10.
Nano Lett ; 14(8): 4205-11, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24983128

RESUMEN

The screening efficiency of a metal-ferroelectric interface plays a critical role in determining the polarization stability and hence the functional properties of ferroelectric thin films. Imperfect screening leads to strong depolarization fields that reduce the spontaneous polarization or drive the formation of ferroelectric domains. We demonstrate that by modifying the screening at the metal-ferroelectric interface through insertion of ultrathin dielectric spacers, the strength of the depolarization field can be tuned and thus used to control the formation of nanoscale domains. Using piezoresponse force microscopy, we follow the evolution of the domain configurations as well as polarization stability as a function of depolarization field strength.

11.
Nat Mater ; 11(3): 195-8, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22266467

RESUMEN

The wide spectrum of exotic properties exhibited by transition-metal oxides stems from the complex competition between several quantum interactions. The capacity to select the emergence of specific phases at will is nowadays extensively recognized as key for the design of diverse new devices with tailored functionalities. In this context, interface engineering in complex oxide heterostructures has developed into a flourishing field, enabling not only further tuning of the exceptional properties of these materials, but also giving access to hidden phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex magnetic structure in a non-magnetic material. We specifically show that exchange bias can unexpectedly emerge in heterostructures consisting of paramagnetic LaNiO3 (LNO) and ferromagnetic LaMnO3 (LMO). The observation of exchange bias in (111)-oriented LNO-LMO superlattices, manifested as a shift of the magnetization-field loop, not only implies the development of interface-induced magnetism in the paramagnetic LNO layers, but also provides us with a very subtle tool for probing the interfacial coupling between the LNO and LMO layers. First-principles calculations indicate that this interfacial interaction may give rise to an unusual spin order, resembling a spin-density wave, within the LNO layers.


Asunto(s)
Lantano/química , Compuestos de Manganeso/química , Niobio/química , Óxidos/química , Magnetismo
13.
Nature ; 460(7251): 45-6, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19571875
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA