Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36987034

RESUMEN

Glyphosate, the most successful herbicide in history, specifically inhibits the activity of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), one of the key enzymes in the shikimate pathway. Amaranthus palmeri is a driver weed in agriculture today that has evolved glyphosate-resistance through increased EPSPS gene copy number and other mechanisms. Non-targeted GC-MS and LC-MS metabolomic profiling was conducted to examine the innate physiology and the glyphosate-induced perturbations in one sensitive and one resistant (by EPSPS amplification) population of A. palmeri. In the absence of glyphosate treatment, the metabolic profile of both populations was very similar. The comparison between the effects of sublethal and lethal doses on sensitive and resistant populations suggests that lethality of the herbicide is associated with an amino acid pool imbalance and accumulation of the metabolites of the shikimate pathway upstream from EPSPS. Ferulic acid and its derivatives were accumulated in treated plants of both populations, while quercetin and its derivative contents were only lower in the resistant plants treated with glyphosate.

2.
Plants (Basel) ; 9(9)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32948013

RESUMEN

Quinate (1,3,4,5-tetrahydroxycyclohexanecarboxylate) is a compound synthesized in plants through a side-branch of the shikimate biosynthesis pathway, which is accumulated after glyphosate and acetolactate synthase inhibiting herbicides (ALS-inhibitors) and has phytotoxic potential. The objective of this study was to evaluate the phytotoxicity of quinate on several weed species. Among the species evaluated, Cynodon dactylon, Bromus diandrus, Lolium rigidum, Sinapis alba, and Papaver rhoeas, P. rhoeas was the most sensitive, and its growth was controlled with quinate concentrations above 100 mM at the phenological stage of 6-8 true leaves. A physiological study, including the shikimate pathway and the physiological markers of ALS-inhibitors (carbohydrates and amino acids), was performed in the sensitive and resistant plants treated with sulfonylureas or quinate. The typical physiological effects of ALS-inhibitors were detected in the sensitive population (free amino acid and carbohydrate accumulation) and not detected in the resistant population. The mode of action of quinate appeared to be related to general perturbations in their carbon/nitrogen metabolism rather than to specific changes in the shikimate pathway. These results suggest the possibility of using quinate in the weed control management of P. rhoeas.

3.
Front Plant Sci ; 11: 459, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411158

RESUMEN

The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway, also known as the shikimate pathway. Amaranthus palmeri is a fast-growing weed, and several populations have evolved resistance to glyphosate through increased EPSPS gene copy number. The main objective of this study was to elucidate the regulation of the shikimate pathway and determine whether the regulatory mechanisms of glyphosate-sensitive and glyphosate-resistant plants were different. Leaf disks of sensitive and resistant (due to EPSPS gene amplification) A. palmeri plants were incubated for 24 h with glyphosate, AAA, glyphosate + AAA, or several intermediates of the pathway: shikimate, quinate, chorismate and anthranilate. In the sensitive population, glyphosate induced shikimate accumulation and induced the gene expression of the shikimate pathway. While AAA alone did not elicit any change, AAA applied with glyphosate abolished the effects of the herbicide on gene expression. It was not possible to fully mimic the effect of glyphosate by incubation with any of the intermediates, but shikimate was the intermediate that induced the highest increase (three-fold) in the expression level of the genes of the shikimate pathway of the sensitive population. These results suggest that, in this population, the lack of end products (AAA) of the shikimate pathway and shikimate accumulation would be the signals inducing gene expression in the AAA pathway after glyphosate application. In general, the effects on gene expression detected after the application of the intermediates were more severe in the sensitive population than in the resistant population. These results suggest that when EPSPS is overexpressed, as in the resistant population, the regulatory mechanisms of the AAA pathway are disrupted or buffered. The mechanisms underlying this behavior remain to be elucidated.

4.
Sci Rep ; 9(1): 18225, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796801

RESUMEN

The herbicides glyphosate and imazamox inhibit the biosynthetic pathway of aromatic amino acids (AAA) and branched-chain amino acids (BCAA), respectively. Both herbicides share several physiological effects in the processes triggered in plants after herbicide application that kills the plant, and mixtures of both herbicides are being used. The aim of this study was to evaluate the physiological effects in the mixture of glyphosate and imazamox in glyphosate-sensitive (GS) and -resistant (GR) populations of the troublesome weed Amaranthus palmeri. The changes detected in the physiological parameters after herbicide mixtures application were similar and even less to the changes detected after individual treatments. This pattern was detected in shikimate, amino acid and carbohydrate content, and it was independent of the EPSPS copy number, as it was detected in both populations. In the case of the transcriptional pattern of the AAA pathway after glyphosate, interesting and contrary interactions with imazamox treatment were detected for both populations; enhancement of the effect in the GS population and alleviation in the GR population. At the transcriptional level, no cross regulation between AAA and BCAA inhibitors was confirmed. This study suggests that mixtures are equally or less toxic than herbicides alone, and would implicate careful considerations when applying the herbicide mixtures.


Asunto(s)
Amaranthus/efectos de los fármacos , Glicina/análogos & derivados , Resistencia a los Herbicidas , Herbicidas/farmacología , Imidazoles/farmacología , Amaranthus/química , Amaranthus/metabolismo , Amaranthus/fisiología , Aminoácidos Aromáticos/análisis , Carbohidratos/análisis , Expresión Génica/efectos de los fármacos , Glicina/administración & dosificación , Glicina/farmacología , Herbicidas/administración & dosificación , Imidazoles/administración & dosificación , Redes y Vías Metabólicas/efectos de los fármacos , Ácido Shikímico/análisis , Glifosato
6.
Front Plant Sci ; 8: 1970, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201035

RESUMEN

A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i) EPSPS increased transcript abundance due to gene copy number variation (CNV) and of (ii) glyphosate application on the aromatic amino acid (AAA) and branched chain amino acid (BCAA) synthesis pathways. Hydroponically grown glyphosate sensitive (GS) and glyphosate resistant (GR) plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated with EPSPS CNV in A. palmeri may be limited.

7.
Pestic Biochem Physiol ; 141: 96-102, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28911748

RESUMEN

The shikimate pathway is a metabolic route for the biosynthesis of aromatic amino acids (AAAs) (i.e. phenylalanine, tyrosine, and tryptophan). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate. Quinate is a compound synthesized in plants through a side branch of the shikimate pathway. Glyphosate provokes quinate accumulation and exogenous quinate application to plants shows a potential role of quinate in the toxicity of the herbicide glyphosate. Based on this, we hypothesized that the role of quinate accumulation in the toxicity of the glyphosate would be mediated by a deregulation of the shikimate pathway. In this study the effect of the glyphosate and of the exogenous quinate was evaluated in roots of pea plants by analyzing the time course of a full metabolic map of several metabolites of shikimate and phenylpropanoid pathways. Glyphosate application induced an increase of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS, first enzyme of the shikimate pathway) protein and accumulation of metabolites upstream of the enzyme EPSPS. No common effects on the metabolites and regulation of shikimate pathway were detected between quinate and glyphosate treatments, supporting that the importance of quinate in the mode of action of glyphosate is not mediated by a common alteration of the regulation of the shikimate pathway. Contrary to glyphosate, the exogenous quinate supplied was probably incorporated into the main trunk from the branch pathway and accumulated in the final products, such as lignin, concomitant with a decrease in the amount of DAHPS protein.


Asunto(s)
Glicina/análogos & derivados , Pisum sativum/metabolismo , Raíces de Plantas/metabolismo , Ácido Quínico/farmacología , Ácido Shikímico/metabolismo , Ácidos Cumáricos/metabolismo , Glicina/farmacología , Hidroxibenzoatos/metabolismo , Pisum sativum/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA