Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(14): 17182-17192, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551997

RESUMEN

In recent years, the infection rate of antibiotic resistance has been increasing year by year, and the prevalence of super bacteria has posed a great threat to human health. Therefore, there is an urgent need to find new antibiotic alternatives with long-term inhibitory activity against a broad spectrum of bacteria and microorganisms in order to avoid the proliferation of more multidrug-resistant (MDR) bacteria. The presence of natural van der Waals (vdW) gaps in layered materials allows them to be easily inserted by different guest species, providing an attractive strategy for optimizing their physicochemical properties and applications. Here, we have successfully constructed a copper-intercalated α-MoO3 nanobelt based on nanoenzymes, which is antibacterial through the synergistic effect of multiple enzymes. Compared with α-MoO3, MoO3-x/Cu nanobelts with a copper loading capacity of 2.11% possess enhanced peroxidase (POD) catalytic activity and glutathione (GSH) depletion, indicating that copper intercalation significantly improves the catalytic performance of the nanoenzymes. The MoO3-x/Cu nanobelts are effective in inducing POD and oxidase (OXD) and catalase (CAT) activities in the presence of H2O2 and O2, which resulted in the generation of large amounts of reactive oxygen species (ROS), which were effective in bacterial killing. Interestingly, MoO3-x/Cu nanobelts can serve as glutathione oxidase (GSHOx)-like nanoenzymes, which can deplete GSH in bacteria and thus significantly improve the bactericidal effect. The multienzyme-catalyzed synergistic antimicrobial strategy shows excellent antimicrobial efficiency against ß-lactamase-producing Escherichia coli (ESBL-E. coli) and methicillin-resistant Staphylococcus aureus (MRSA). MoO3-x/Cu exhibits excellent spectral bactericidal properties at very low concentrations (20 µg mL-1). Our work highlights the wide range of antibacterial and anti-infective biological applications of copper-intercalated MoO3-x/Cu nanobelt catalysts.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Cobre/farmacología , Cobre/química , Escherichia coli , Peróxido de Hidrógeno/farmacología , Bacterias , Antioxidantes/farmacología
2.
Adv Healthc Mater ; 12(32): e2302020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37767984

RESUMEN

Solid tumors are characterized by enhanced metabolism of lipid, particularly cholesterol, inspiring the exploration of metabolic therapy through cholesterol oxidase (COD)-mediated cholesterol deprivation. However, the therapeutic efficacy of COD is limited due to the hypoxic tumor microenvironment and the protective autophagy triggered by cholesterol deprivation. Herein, a combination therapy for metabolically treating solid tumors through COD in conjunction with molybdenum oxide nanodots (MONDs), which serve as both potent oxygen generators and autophagy inhibitors, is reported. MONDs convert H2 O2 (arising from COD-mediated cholesterol oxidation) into O2 , which is then recycled by COD to form reciprocal feedback for cholesterol depletion. Concurrently, MONDs can overcome autophagy-induced therapeutic resistance frequently occurring in conventional nutrient deprivation therapy by activating AKT/mTOR pathway phosphorylation. Combination therapy in the xenograft model results in an ≈5-fold increase in therapeutic efficiency as compared with COD treatment alone. This functionally cooperative metabolic coupling strategy holds great promise as a novel polytherapy approach that will benefit patients with solid tumors.


Asunto(s)
Autofagia , Neoplasias , Humanos , Retroalimentación , Neoplasias/tratamiento farmacológico , Colesterol , Fosforilación , Línea Celular Tumoral , Microambiente Tumoral
3.
J Colloid Interface Sci ; 645: 933-942, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37178569

RESUMEN

Antibacterial nanomaterials provide promising alternative strategies to combat the bacterial infection due to deteriorating resistance. However, few have been practically applied due to the lack of clear antibacterial mechanisms. In this work, we selected good-biocompatibility iron-doped CDs (Fe-CDs) with antibacterial activity as a comprehensive research model to systematically reveal the intrinsic antibacterial mechanism. Through energy dispersive spectroscopy (EDS) mapping of in situ ultrathin sections of bacteria, we found that a large amount of iron was accumulated inside the bacteria treated with Fe-CDs. Then, combining the data of cell level and transcriptomics, it can be elucidated that Fe-CDs could interact with cell membranes, enter bacterial cells through iron transport and infiltration, increase intracellular iron levels, trigger increased reactive oxygen species (ROS), and lead to disruption of Glutathione (GSH)-dependent antioxidant mechanisms. Excessive ROS further leads to lipid peroxidation and DNA damage in cells, lipid peroxidation destroys the integrity of the cell membrane, and finally leads to the leakage of intracellular substances resulting in bacterial growth inhibition and death. This result provides important insights into the antibacterial mechanism of Fe-CDs and further provides a basis for the deep application of nanomaterials in biomedicine.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Hierro/química , Carbono/farmacología , Carbono/química , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antibacterianos/química , Puntos Cuánticos/química
4.
Appl Opt ; 60(29): 9180-9187, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34624000

RESUMEN

A single-pixel neural network object classification scenario in the sub-Nyquist ghost imaging system is proposed. Based on the neural network, objects are classified directly by bucket measurements without reconstructing images. Classification accuracy can still be maintained at 94.23% even with only 16 measurements (less than the Nyquist limit of 1.56%). A parallel computing scheme is applied in data processing to reduce the object acquisition time significantly. Random patterns are used as illumination patterns to illuminate objects. The proposed method performs much better than existing methods for both binary and grayscale images in the sub-Nyquist condition, which is also robust to environment noise turbulence. Benefiting from advantages of ghost imaging, it may find applications for target recognition in the fields of remote sensing, military defense, and so on.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA