Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Semin Cell Dev Biol ; 156: 266-275, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37919144

RESUMEN

If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Dinámicas Mitocondriales , Mitocondrias , Longevidad
2.
Nat Cell Biol ; 25(8): 1111-1120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460695

RESUMEN

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete1, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs. 2,3) regulates this balance in favour of mtDNA repair by localizing to mitochondria and interfering with the assembly of the mitochondrial pre-initiation transcription complex between HMG-5/TFAM and RPOM-1/mtRNAP. ATFS-1-mediated transcriptional inhibition decreases age-dependent mtDNA molecular damage through the DNA glycosylase NTH-1/NTH1, as well as the helicase TWNK-1/TWNK, resulting in an enhancement in the functional longevity of cells and protection against decline in animal behaviour caused by targeted and severe mtDNA damage. Together, our findings reveal that ATFS-1 acts as a molecular focal point for the control of balance between genome expression and maintenance in the mitochondria.


Asunto(s)
Proteínas de Caenorhabditis elegans , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Caenorhabditis elegans/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Daño del ADN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
EMBO J ; 42(13): e112767, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37161784

RESUMEN

To maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood. Here, we report that SCFFBXL4 , an SKP1/CUL1/F-box protein ubiquitin ligase complex, localises to the mitochondrial outer membrane in unstressed cells and mediates the constitutive ubiquitylation and degradation of the mitophagy receptors NIX and BNIP3 to suppress basal levels of mitophagy. We demonstrate that the pathogenic variants of FBXL4 that cause encephalopathic mtDNA depletion syndrome (MTDPS13) do not efficiently interact with the core SCF ubiquitin ligase machinery or mediate the degradation of NIX and BNIP3. Thus, we reveal a molecular mechanism whereby FBXL4 actively suppresses mitophagy by preventing NIX and BNIP3 accumulation. We propose that the dysregulation of NIX and BNIP3 turnover causes excessive basal mitophagy in FBXL4-associated mtDNA depletion syndrome.


Asunto(s)
Mitofagia , Fagocitosis , Autofagia/fisiología , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Humanos , Animales , Ratones
5.
STAR Protoc ; 2(4): 100952, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34841276

RESUMEN

Cell-Specific Mitochondria Affinity Purification (CS-MAP) enables isolation and purification of intact mitochondria from individual cell types of Caenorhabditis elegans. The approach is based on the cell-specific expression of a recombinant hemagglutinin (HA)-tag fused to the TOMM-20 protein that decorates the surface of mitochondria, thereby allowing their immunomagnetic purification. This protocol describes the CS-MAP procedure performed on large populations of animals. The purified mitochondria are suitable for subsequent nucleic acid, protein, and functional analyses. For complete details on the use and execution of this protocol, please refer to Ahier et al. (2018, 2021).


Asunto(s)
Caenorhabditis elegans/citología , Técnicas Citológicas/métodos , Técnicas Inmunológicas/métodos , Mitocondrias , Animales , Mitocondrias/química , Mitocondrias/metabolismo , Mitocondrias/fisiología
6.
Cell Rep ; 35(9): 109203, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077728

RESUMEN

In multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, but the mechanisms that drive these heteroplasmy differences are unknown. We find that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans. We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels. Moreover, we show that ΔmtDNA heteroplasmy increases when proteotoxic species that are associated with neurodegenerative disease and mitophagy inhibition are overexpressed in the nervous system. These results suggest that PINK1 and parkin drive organism-wide patterns of heteroplasmy and provide evidence of a causal link between proteotoxicity, mitophagy, and mtDNA mutation levels in neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Genoma Mitocondrial , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN Mitocondrial/genética , Heteroplasmia , Mitofagia/genética , Células Musculares/metabolismo , Neuronas/metabolismo
7.
Aging Cell ; 20(7): e13408, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096683

RESUMEN

Changes in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone (Mrps12ep/ep ) or hyper-accurate (Mrps12ha/ha ) mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner. In two distinct organs that are commonly affected by the metabolic disease, the heart and the liver, Mrps12ep/ep mice were protected against heart defects but sensitive towards lipid accumulation in the liver, activating genes involved in steroid and amino acid metabolism. In contrast, enhanced translational accuracy in Mrps12ha/ha mice protected the liver from a high-fat diet through activation of liver proliferation programs, but enhanced the development of severe hypertrophic cardiomyopathy and led to reduced lifespan. These findings reflect the complex transcriptional and cell signalling responses that differ between post-mitotic (heart) and highly proliferative (liver) tissues. We show trade-offs between the rate and fidelity of mitochondrial protein synthesis dictate tissue-specific outcomes due to commonly encountered stressful environmental conditions or aging.


Asunto(s)
Enfermedades Cardiovasculares/genética , Mitocondrias/metabolismo , Estrés Fisiológico/genética , Animales , Humanos , Longevidad , Masculino , Ratones
8.
Nat Commun ; 12(1): 2194, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850152

RESUMEN

Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes. Epitope-labelled AGO proteins were selectively expressed and immunoprecipitated from three distinct tissue types and associated miRNAs sequenced. In addition to providing information on biological function, we define adaptable miRNA:AGO interactions with single-cell-type and AGO-specific resolution. We demonstrate spatial and temporal dynamicism, flexibility of miRNA loading, and suggest miRNA regulatory mechanisms via AGO selectivity in different tissues and during ageing. Additionally, we resolve widespread changes in AGO-regulated gene expression by analysing translatomes specifically in neurons.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Sistema Nervioso , Isoformas de Proteínas
9.
Antioxidants (Basel) ; 8(9)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514455

RESUMEN

Mitochondria are critical for the energetic demands of virtually every cellular process within nucleated eukaryotic cells. They harbour multiple copies of their own genome (mtDNA), as well as the protein-synthesing systems required for the translation of vital subunits of the oxidative phosphorylation machinery used to generate adenosine triphosphate (ATP). Molecular lesions to the mtDNA cause severe metabolic diseases and have been proposed to contribute to the progressive nature of common age-related diseases such as cancer, cardiomyopathy, diabetes, and neurodegenerative disorders. As a consequence of playing a central role in cellular energy metabolism, mitochondria produce reactive oxygen species (ROS) as a by-product of respiration. Here we review the evidence that mutations in the mtDNA exacerbate ROS production, contributing to disease.

10.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538104

RESUMEN

Accumulation of the protein tau characterises Alzheimer's disease and other tauopathies, including familial forms of frontotemporal dementia (FTD) that carry pathogenic tau mutations. Another hallmark feature of these diseases is the accumulation of dysfunctional mitochondria. Although disease-associated tau is known to impair several aspects of mitochondrial function, it is still unclear whether it also directly impinges on mitochondrial quality control, specifically Parkin-dependent mitophagy. Using the mito-QC mitophagy reporter, we found that both human wild-type (hTau) and FTD mutant tau (hP301L) inhibited mitophagy in neuroblastoma cells, by reducing mitochondrial translocation of Parkin. In the Caenorhabditis elegans nervous system, hTau expression reduced mitophagy, whereas hP301L expression completely inhibited it. These effects were not due to changes in the mitochondrial membrane potential or the cytoskeleton, as tau specifically impaired Parkin recruitment to defective mitochondria by sequestering it in the cytosol. This sequestration was mediated by aberrant interactions of Parkin with the projection domain of tau. As mitochondria are dysfunctional in neurodegenerative conditions, these data suggest a vicious cycle, with tau also inhibiting the degradation of damaged mitochondria.


Asunto(s)
Mitocondrias/patología , Mitofagia , Neuroblastoma/patología , Neuronas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas tau/metabolismo , Animales , Caenorhabditis elegans , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas/metabolismo , Transporte de Proteínas , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Proteínas tau/genética
11.
Trends Cell Biol ; 29(3): 227-240, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509558

RESUMEN

Mitochondrial genome (mitochondrial DNA, mtDNA) lesions that unbalance bioenergetic and oxidative outputs are an important cause of human disease. A major impediment in our understanding of the pathophysiology of mitochondrial disorders is the complexity with which mtDNA mutations are spatiotemporally distributed and managed within individual cells, tissues, and organs. Unlike the comparatively static nuclear genome, accumulating evidence highlights the variability, dynamism, and modifiability of the mtDNA nucleotide sequence between individual cells over time. In this review, we summarize and discuss the impact of mtDNA defects on disease within the context of a mosaic and shifting mutational landscape.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Enfermedades Mitocondriales/genética , Humanos , Enfermedades Mitocondriales/patología , Mutación
12.
Nat Commun ; 9(1): 2221, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880867

RESUMEN

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CIIlow, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CIIlow leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CIIlow is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Paraganglioma/patología , Estrés Fisiológico , Animales , Vías Biosintéticas/fisiología , Línea Celular Tumoral , Complejo II de Transporte de Electrones/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Paraganglioma/genética , ARN Interferente Pequeño/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Cell Biol ; 20(3): 361, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29449617

RESUMEN

In the version of this Technical Report originally published, chromosome representations (indicated by black lines) were missing from Fig. 2a due to a technical error. The corrected version of Fig. 2a is shown below. This has now been amended in all online versions of the Technical Report.

14.
Nat Cell Biol ; 20(3): 352-360, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29358705

RESUMEN

Although mitochondria are ubiquitous organelles, they exhibit tissue-specific morphology, dynamics and function. Here, we describe a robust approach to isolate mitochondria from specific cells of diverse tissue systems in Caenorhabditis elegans. Cell-specific mitochondrial affinity purification (CS-MAP) yields intact and functional mitochondria with exceptional purity and sensitivity (>96% enrichment, >96% purity, and single-cell and single-animal resolution), enabling comparative analyses of protein and nucleic acid composition between organelles isolated from distinct cellular lineages. In animals harbouring a mixture of mutant and wild-type mitochondrial genomes, we use CS-MAP to reveal subtle mosaic patterns of cell-type-specific heteroplasmy across large populations of animals (>10,000 individuals). We demonstrate that the germline is more prone to propagating deleterious mitochondrial genomes than somatic lineages, which we propose is caused by enhanced mtDNA replication in this tissue.


Asunto(s)
Caenorhabditis elegans/genética , Fraccionamiento Celular/métodos , Cromatografía de Afinidad , ADN Mitocondrial/genética , Mitocondrias/genética , Mosaicismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Replicación del ADN , ADN Mitocondrial/biosíntesis , Microscopía Confocal , Mitocondrias/metabolismo , Mutación , Especificidad de Órganos
15.
Science ; 345(6198): 826-9, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25124442

RESUMEN

Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Transdiferenciación Celular , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Neuronas Motoras/citología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Desdiferenciación Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Sistema Digestivo/citología , Histona Demetilasas/química , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Lisina/metabolismo , Metilación , Modelos Biológicos , Datos de Secuencia Molecular , Factores de Transcripción/metabolismo
16.
PLoS One ; 9(1): e87345, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475278

RESUMEN

Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate "real time" gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-ß in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Células Epiteliales/fisiología , Regulación de la Expresión Génica/fisiología , Túbulos Renales Proximales/citología , Captura por Microdisección con Láser/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Transducción de Señal/fisiología , Análisis de Varianza , Fibrosis , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Túbulos Renales Proximales/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Worm ; 2(3): e25081, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24778934

RESUMEN

The development of next-generation sequencing technologies has enabled rapid and cost effective whole genome sequencing. This technology has allowed researchers to shortcut time-consuming and laborious methods used to identify nucleotide mutations in forward genetic screens in model organisms. However, causal mutations must still be mapped to a region of the genome so as to aid in their identification. This can be achieved simultaneously with deep sequencing through various methods. Here we discuss alternative deep sequencing strategies for simultaneously mapping and identifying causal mutations in Caenorhabditis elegans from mutagenesis screens. Focusing on practical considerations, such as the particular mutant phenotype obtained, this review aims to aid the reader in choosing which strategy to adopt to successfully clone their mutant.

18.
Science ; 338(6108): 807-10, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23139334

RESUMEN

Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.


Asunto(s)
Caenorhabditis elegans/enzimología , Escarabajos/enzimología , Dihidrolipoamida Deshidrogenasa/genética , Resistencia a los Insecticidas/genética , Insecticidas , Fosfinas , Tribolium/enzimología , Animales , Arsenicales/farmacología , Arsenitos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dominio Catalítico , Escarabajos/efectos de los fármacos , Escarabajos/genética , Escarabajos/metabolismo , Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Mutación , Oxidación-Reducción , Plaguicidas , Fosfinas/farmacología , Polimorfismo Genético , Multimerización de Proteína , Tribolium/efectos de los fármacos , Tribolium/genética , Tribolium/metabolismo
19.
Wiley Interdiscip Rev Dev Biol ; 1(1): 138-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23801672

RESUMEN

In vitro systems of cellular reprogramming [induced pluripotent stem (iPS) cells and direct reprogramming or transdifferentiation] are rapidly improving our repertoire of molecular techniques that can force cells in culture to change into a desired identity. However, the new frontier for regenerative medicine is in vivo cellular reprogramming, which in light of concerns about the safety of in vitro cell manipulations, is an increasingly attractive approach for regenerative medicine. Powerful in vivo approaches are currently being undertaken in the genetic model Caenorhabditis elegans. Several very distinct cell types have been induced to change or have been discovered to transform naturally, into altogether different cell types. These examples have improved our understanding of the fundamental molecular and cellular mechanisms that permit cell identity changes in live animals. In addition, the combination of a stereotyped lineage with single cell analyses allows dissection of the early and intermediate mechanisms of reprogramming, as well as their kinetics. As a result, several important concepts on in vivo cellular reprogramming have been recently developed.


Asunto(s)
Caenorhabditis elegans/metabolismo , Reprogramación Celular , Animales , Blastómeros/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transdiferenciación Celular , Células Germinativas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Medicina Regenerativa
20.
Development ; 138(8): 1483-92, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21389048

RESUMEN

Cells can change identity during normal development, in response to tissue damage or defined artificial treatments, or during disease processes such as cancer. Strikingly, not only the reprogramming of tissue cells to an embryonic stem cell-like state, but also the direct conversion from one cell type to another have been described. Direct cell type conversion could represent an alternative strategy for cellular therapies. However, little is known about the actual cellular steps undertaken by a cell as it changes its identity and their possible consequences for the organism. Using an in vivo single-cell system of natural direct reprogramming, in which a C. elegans rectal cell transforms into a motoneuron, we present an in-depth analysis of the cellular transformations involved. We found that the reprogrammed cell transits through intermediate states during direct in vivo reprogramming. We identified and characterised a mutant in the conserved COE transcription factor UNC-3 in which this cellular transformation is blocked. We determined that complete erasure of initial identity first takes place, followed by stepwise, unc-3-dependent, redifferentiation into a motoneuron. Furthermore, unlike in vitro induced reprogramming, reversion to a dedifferentiated identity does not lead to an increase in cellular potential in a natural, in vivo context. Our findings suggest that direct cell type conversion occurs via successive steps, and that dedifferentiation can occur in the absence of cell division. Furthermore, our results suggest that mechanisms are in place in vivo to restrict cell potential during reprogramming, a finding with important implications for regenerative medicine.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Reprogramación Celular/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA