Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mini Rev Med Chem ; 22(11): 1495-1515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34814816

RESUMEN

In recent years, there has been a significant increase in the search for new therapeutic strategies for the treatment of inflammatory diseases. In this sense, natural products emerge as a potential source for the discovery of new drugs, with the research of the pharmacological properties of these products being very important. In addition to its function in plants (insect attraction and repellency), essential oils present pharmacological effects, such as antibacterial, antifungal, antimutagenic, antiviral, antiprotozoal, antioxidant, antidiabetic and anti-inflammatory properties. In this review, we describe the mostly used in vivo acute inflammatory experimental models and the studies showing the in vivo anti-inflammatory activity of essential oils. Essential oil from species from the Apiaceae, Asteraceae, Burseraceae, Boraginaceae, Cupressaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Lauraceae, Myrtaceae, Piperaceae, Poaceae, Rutaceae, Verbenaceae and Zingiberaceae families were described as being anti-inflammatory in vivo. Five models of acute inflammation are commonly used to investigate the anti-inflammatory activity in vivo: ear and paw edema, pleurisy, peritonitis and the subcutaneous air pouch model. In addition to in vivo analysis, ex vivo and in vitro experiments are carried out to study the anti-inflammatory action of essential oils. The most commonly used model was paw edema, especially due to this model being easy to perform. In order to suggest or elucidate the mechanisms involved in the anti-inflammatory effect, many studies measured some inflammatory mediators, such as cytokines, COX-2 expression and the levels of PGE2, and NO, or evaluated the effect of essential oils or their major compounds on inflammation response directly induced by inflammatory mediators.


Asunto(s)
Aceites Volátiles , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Extractos Vegetales/farmacología
2.
Microb Pathog ; 103: 13-18, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27988226

RESUMEN

Aniba canelilla (H.B.K.) Mez, popularly known as "casca-preciosa" (precious bark), is a plant of the Lauraceae family, widely distributed in the Amazon region. Its major constituent is 1-nitro-2-phenylethane, a rare molecule in plants which is responsible for this plant's cinnamon scent. The present study aimed to report the chemical characterization of the oil extracted from Aniba canelilla using gas-chromatography/mass spectrometry and to assess its in vitro trypanocidal activity against Trypanosoma evansi, a prevalent haemoflagellate parasite that affects a broad range of mammal species in Africa, Asia and South America. The oil presented 1-nitro-2-phenylethane (83.68%) and methyleugenol (14.83%) as the two major components. The essential oil as well as both major compounds were shown to exert trypanocidal effect. Methyleugenol was slightly more active than 1-nitro-2-phenylethane. In vitro studies showed that the oil extracted from the stems of A. canelilla may be regarded as a potential natural treatment for trypanosomosis, once proven their in vivo action, may be an interesting alternative in the treatment of infected animals with T. evansi.


Asunto(s)
Embryophyta/química , Linfocitos/efectos de los fármacos , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Tripanocidas/farmacología , Trypanosoma/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía de Gases , Humanos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química , Aceites de Plantas/química , Tripanocidas/química
3.
Open Dent J ; 10: 188-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27386004

RESUMEN

UNLABELLED: Amazonian biodiversity products that have been used for years in folk medicine, have emerged as feasible and promising alternatives for the inhibition of microorganisms in dental biofilm. Copaiba oil, a phytotherapic agent widely used by the Amazonian populations, is known for its antibacterial, anti-inflammatory, anesthetic, healing and antitumor medicinal properties. OBJECTIVE: The aim of this study was to evaluate the in vitro antibacterial activity of copaiba oil (Copaifera multijuga) gel against strains of Streptococcus sp present in dental biofilm. MATERIALS AND METHODS: The copaiba oil was obtained and the chemical components were identified. The oil emulsions were formulated and used with the Brain Heart Infusion agar diffusion method with strains of Streptococcus mitis, Streptococcus constellatus and Streptococcus salivarius isolated from patients as well as standard strains of S. mitis (ATCC903), S. mutans (ATCC10449), S. sanguinis (ATCC15300) and S. oralis (ATCC10557). The study groups were as follows: experimental copaiba oil gel, 1% chlorhexidine gel (positive control) and base gel (negative control). The seeded plates were incubated at 37ºC for 12, 24 and 48 hours, respectively. The results obtained were analyzed by Shapiro-Wilk and Friedman Tests (p<0.05) for non parametric data and the Tukey test was used for pH values with 5% level of significance. RESULTS: The experimental copaiba oil gel and 1% chlorhexidine gel showed antibacterial activity against the tested microorganisms. CONCLUSION: The copaiba oil gel demonstrated antibacterial activity against all the strains of Streptococcus sp tested, suggesting that it can be used for dental biofilm control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA