Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Endocrinol ; 259(1)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37552528

RESUMEN

Prior research demonstrated that glucagon has protective roles against inflammation, but its effect on the resolution of inflammation remains elusive. Using in vitro and in vivo approaches, this study aimed to investigate the pro-resolving potential of glucagon on pulmonary neutrophilic inflammation caused by lipopolysaccharide. Lipopolysaccharide induced an increase in the proportions of neutrophils positives to glucagon receptor (GcgR) in vitro. In addition, lipopolysaccharide induced an increase in the neutrophil accumulation and expression of GcgR by the inflammatory cells in the lungs, however, without altering glucagon levels. Intranasal treatment with glucagon, at the peak of neutrophilic inflammation, reduced the neutrophil number in the bronchoalveolar lavage (BAL), and lung tissue within 24 h. The reduction of neutrophilic inflammation provoked by glucagon was accompanied by neutrophilia in the blood, an increase in the apoptosis rate of neutrophils in the BAL, enhance in the pro-apoptotic Bax protein expression, and decrease in the anti-apoptotic Bcl-2 protein levels in the lung. Glucagon also induced a rise in the cleavage of caspase-3 in the lungs; however, it was not significant. Glucagon inhibited the levels of IL-1ß and TNF-α while increasing the content of pro-resolving mediators transforming growth factor (TGF-ß1) and PGE2 in the BAL and lung. Finally, glucagon inhibited lipopolysaccharide-induced airway hyper-reactivity, as evidenced by the reduction in lung elastance values in response to methacholine. In conclusion, glucagon-induced resolution of neutrophilic inflammation by promoting cessation of neutrophil migration and a rise of neutrophil apoptosis and the levels of pro-resolving mediators TGF-ß1 and PGE2.


Asunto(s)
Glucagón , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , Glucagón/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Dinoprostona/farmacología , Pulmón , Inflamación/metabolismo , Neutrófilos/metabolismo
2.
Cells ; 11(5)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269381

RESUMEN

Annexin-A1 (AnxA1) and its N-terminal derived peptide Ac2-26 regulate the inflammatory response in several experimental models of disorders. This study evaluated the effect of endogenous AnxA1 and its N-terminal peptide Acetyl 2-26 (Ac2-26) on allergic asthma triggered by house dust mite (HDM) extract in mice. ANXA1-/- and wildtype (WT) mice were exposed to intranasal instillation of HDM every other day for 3 weeks, with analyses performed 24 h following the last exposure. Intranasal administration of peptide Ac2-26 was performed 1 h before HDM, beginning 1 week after the initial antigen application. ANXA1-/- mice stimulated with HDM showed marked exacerbations of airway hyperreactivity (AHR), eosinophil accumulation, subepithelial fibrosis, and mucus hypersecretion, all parameters correlating with overexpression of cytokines (IL-4, IL-13, TNF-α, and TGF-ß) and chemokines (CCL11/eotaxin-1 and CCL2/MCP-1). Intranasal treatment with peptide Ac2-26 decreased eosinophil infiltration, peribronchiolar fibrosis, and mucus exacerbation caused by the allergen challenge. Ac2-26 also inhibited AHR and mediator production. Collectively, our findings show that the AnxA1-derived peptide Ac2-26 protects against several pathological changes associated with HDM allergic reaction, suggesting that this peptide or related AnxA1-mimetic Ac2-26 may represent promising therapeutic candidates for the treatment of allergic asthma.


Asunto(s)
Asma , Inflamación , Alérgenos , Animales , Asma/tratamiento farmacológico , Citocinas , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico
3.
Artículo en Inglés | MEDLINE | ID: mdl-32625168

RESUMEN

Silicosis is an occupational disease triggered by the inhalation of fine particles of crystalline silica and characterized by inflammation and scarring in the form of nodular lesions in the lungs. In spite of the therapeutic arsenal currently available, there is no specific treatment for the disease. Flunisolide is a potent corticosteroid shown to be effective for controlling chronic lung inflammatory diseases. In this study, the effect of flunisolide on silica-induced lung pathological changes in mice was investigated. Swiss-Webster mice were injected intranasally with silica particles and further treated with flunisolide from day 21 to 27 post-silica challenge. Lung function was assessed by whole body invasive plethysmography. Granuloma formation was evaluated morphometrically, collagen deposition by Picrus sirius staining and quantitated by Sircol. Chemokines and cytokines were evaluated using enzyme-linked immunosorbent assay. The sensitivity of lung fibroblasts was also examined in in vitro assays. Silica challenge led to increased leukocyte numbers (mononuclear cells and neutrophils) as well as production of the chemokine KC/CXCL-1 and the cytokines TNF-α and TGF-ß in the bronchoalveolar lavage. These alterations paralleled to progressive granuloma formation, collagen deposition and impairment of lung function. Therapeutic administration of intranasal flunisolide inhibited granuloma and fibrotic responses, noted 28 days after silica challenge. The upregulation of MIP-1α/CCL-3 and MIP-2/CXCL-2 and the cytokines TNF-α and TGF-ß, as well as deposition of collagen and airway hyper-reactivity to methacholine were shown to be clearly sensitive to flunisolide, as compared to silica-challenge untreated mice. Additionally, flunisolide effectively suppressed the responses of proliferation and MCP-1/CCL-2 production from IL-13 stimulated lung fibroblasts from silica- or saline-challenged mice. In conclusion, we report that intranasal treatment with the corticosteroid flunisolide showed protective properties on pathological features triggered by silica particles in mice, suggesting that the compound may constitute a promising strategy for the treatment of silicosis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Fluocinolona Acetonida/análogos & derivados , Pulmón/efectos de los fármacos , Pulmón/patología , Neumonía/patología , Dióxido de Silicio/toxicidad , Silicosis/patología , Administración Intranasal , Animales , Fibrosis/inducido químicamente , Fibrosis/prevención & control , Fluocinolona Acetonida/administración & dosificación , Masculino , Ratones , Neumonía/inducido químicamente , Neumonía/prevención & control , Silicosis/complicaciones , Silicosis/prevención & control
4.
Free Radic Res ; 51(7-8): 708-722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28776450

RESUMEN

Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14 mg/kg) or allopurinol (25 mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50 mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100 mg/kg) (superoxide dismutase inhibitor) were performed 1 h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1ß secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1ß production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.


Asunto(s)
Asma/inmunología , Inflamación/inmunología , Óxido Nítrico/antagonistas & inhibidores , Hipersensibilidad Respiratoria/inmunología , Superóxidos/antagonistas & inhibidores , Acetofenonas/administración & dosificación , Alopurinol/administración & dosificación , Animales , Asma/metabolismo , Asma/patología , Modelos Animales de Enfermedad , Peroxidasa del Eosinófilo/inmunología , Peroxidasa del Eosinófilo/metabolismo , Guanidinas/administración & dosificación , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Inflamación/metabolismo , Inflamación/patología , Interleucina-13/inmunología , Interleucina-13/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Interleucina-4/inmunología , Interleucina-4/metabolismo , Ratones , Óxido Nítrico/inmunología , Ovalbúmina/inmunología , Estrés Oxidativo/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Superóxidos/inmunología , Células TH1/inmunología , Células Th2/inmunología
5.
Front Immunol ; 7: 95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014274

RESUMEN

Prior investigations show that signaling activation through pattern recognition receptors can directly impact a number of inflammatory lung diseases. While toll-like receptor (TLR) 7 agonists have raised interest for their ability to inhibit allergen-induced pathological changes in experimental asthma conditions, the putative benefit of this treatment is limited by adverse effects. Our aim was to evaluate the therapeutic potential of two PEGylated purine-like compounds, TMX-302 and TMX-306, characterized by TLR7 partial agonistic activity; therefore, the compounds are expected to induce lower local and systemic adverse reactions. In vitro approaches and translation to murine models of obstructive and restrictive lung diseases were explored. In vitro studies with human PBMCs showed that both TMX-302 and TMX-306 marginally affects cytokine production as compared with equivalent concentrations of the TLR7 full agonist, TMX-202. The PEGylated compounds did not induce monocyte-derived DC maturation or B cell proliferation, differently from what observed after stimulation with TMX-202. Impact of PEGylated ligands on lung function and inflammatory changes was studied in animal models of acute lung injury, asthma, and silicosis following Lipopolysaccharide (LPS), allergen (ovalbumin), and silica inhalation, respectively. Subcutaneous injection of TMX-302 prevented LPS- and allergen-induced airway hyper-reactivity (AHR), leukocyte infiltration, and production of pro-inflammatory cytokines in the lung. However, intranasal instillation of TMX-302 led to neutrophil infiltration and failed to prevent allergen-induced AHR, despite inhibiting leukocyte counts in the BAL. Aerosolized TMX-306 given prophylactically, but not therapeutically, inhibited pivotal asthma features. Interventional treatment with intranasal instillation of TMX-306 significantly reduced the pulmonary fibrogranulomatous response and the number of silica particles in lung interstitial space in silicotic mice. These findings highlight the potential of TMX-306, emphasizing its value in drug development for lung diseases, and particularly silicosis.

6.
J Immunol ; 191(10): 5220-9, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24133168

RESUMEN

Instillation of silica into the lungs of rodents results in pathological changes that strongly mimic human silicosis, an occupational lung disease marked by restrictive airway obstruction, inflammation, and fibrosis. Because IL-13 is a pivotal proinflammatory and fibrogenic cytokine, we examined whether a recombinant immunotoxin comprised of human IL-13 and a mutated form of Pseudomonas exotoxin (IL-13-PE) might affect pathological features of experimental silicosis. Mice received a single intranasal instillation of silica particles and were treated with intranasal IL-13-PE every other day from days 21 to 27 postsilica. The sensitivity of putative cell targets to IL-13-PE was also assessed in in vitro settings. Upregulation of IL-13, its receptor subunits IL-13Rα1 and IL-13Rα2, and shared receptor IL-4Rα were associated with development of granulomatous lung inflammation triggered by silica. IL-13-PE inhibited silica-induced granuloma and fibrotic responses noted at 24 h and 15 d after the last treatment. Upregulation of TNF-α, TGF-ß, and chemokines, as well as increased collagen deposition and airway hyperreactivity to methacholine were all clearly sensitive to IL-13-PE. In addition, IL-13-PE inhibited both IL-13-induced proliferation of cultured lung fibroblasts from silicotic mice and silica-induced IL-8 generation from A549 cells. In conclusion, our findings show that therapeutic treatment with IL-13-PE can reverse important pathological features caused by inhalation of silica particles, suggesting that this recombinant immunotoxin is a promising molecular template in drug discovery for the treatment of silicosis.


Asunto(s)
Exotoxinas/metabolismo , Interleucina-13/metabolismo , Proteínas Recombinantes/metabolismo , Silicosis/metabolismo , Administración Intranasal , Animales , Proliferación Celular , Células Cultivadas , Exotoxinas/administración & dosificación , Fibroblastos/metabolismo , Granuloma/inmunología , Inflamación/metabolismo , Interleucina-13/administración & dosificación , Interleucina-13/biosíntesis , Subunidad alfa del Receptor de Interleucina-4/biosíntesis , Interleucina-8/biosíntesis , Pulmón/inmunología , Pulmón/patología , Linfotoxina-alfa/biosíntesis , Masculino , Cloruro de Metacolina , Ratones , Pseudomonas/metabolismo , Receptores de Interleucina-13/biosíntesis , Proteínas Recombinantes/uso terapéutico , Hipersensibilidad Respiratoria/inmunología , Dióxido de Silicio/administración & dosificación , Silicosis/tratamiento farmacológico , Silicosis/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Regulación hacia Arriba
7.
Molecules ; 17(12): 14651-72, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-23222927

RESUMEN

In this paper we report the design, synthesis and pharmacological evaluation of a new series of phenyl sulfonamide derivatives 2a-h and 3-8 planned by structural modification on the anti-inflammatory prototype LASSBio-468 (1). Among the synthesized analogues, the tetrafluorophthalimide LASSBio-1439 (2e) stands out showing an in vitro anti-TNF-α effect similar to the standard thalidomide. The relevance of tetrafluorination of the phthalimide nucleus was also confirmed by the anti-inflammatory profile of 2e, through oral administration, in a murine model of pulmonary inflammation. The corresponding tetrafluorocarboxyamide metabolite LASSBio-1454 (15), generated from partial hydrolysis of the derivative 2e, presented a significant in vitro effect and a pronounced anti-inflammatory activity in vivo.


Asunto(s)
Ftalimidas , Neumonía , Sulfonamidas , Factor de Necrosis Tumoral alfa , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Isoindoles/química , Isoindoles/uso terapéutico , Lipopolisacáridos/toxicidad , Ratones , Ftalimidas/administración & dosificación , Ftalimidas/síntesis química , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/patología , Relación Estructura-Actividad , Sulfonamidas/administración & dosificación , Sulfonamidas/síntesis química , Sulfonamidas/química , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA