Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Hered ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757192

RESUMEN

The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A+T content ranging between 38,1 and 68,1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.

2.
BMC Ecol Evol ; 24(1): 72, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816840

RESUMEN

Ctenoluciidae is a Neotropical freshwater fish family composed of two genera, Ctenolucius (C. beani and C. hujeta) and Boulengerella (B. cuvieri, B. lateristriga, B. lucius, B. maculata, and B. xyrekes), which present diploid number conservation of 36 chromosomes and a strong association of telomeric sequences with ribosomal DNAs. In the present study, we performed chromosomal mapping of microsatellites and transposable elements (TEs) in Boulengerella species and Ctenolucius hujeta. We aim to understand how those sequences are distributed in these organisms' genomes and their influence on the chromosomal evolution of the group. Our results indicate that repetitive sequences may had an active role in the karyotypic diversification of this family, especially in the formation of chromosomal hotspots that are traceable in the diversification processes of Ctenoluciidae karyotypes. We demonstrate that (GATA)n sequences also accumulate in the secondary constriction formed by the 18 S rDNA site, which shows consistent size heteromorphism between males and females in all Boulengerella species, suggesting an initial process of sex chromosome differentiation.


Asunto(s)
Characiformes , Mapeo Cromosómico , Secuencias Repetitivas de Ácidos Nucleicos , Retroelementos , Animales , Characiformes/genética , Masculino , Femenino , Retroelementos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Evolución Molecular , Repeticiones de Microsatélite/genética , Cariotipo , Cromosomas/genética
3.
BMC Ecol Evol ; 24(1): 51, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654159

RESUMEN

BACKGROUND: Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS: From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION: The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.


Asunto(s)
Paleognatos , Cromosomas Sexuales , Animales , Cromosomas Sexuales/genética , Paleognatos/genética , Masculino , Femenino , Evolución Molecular , Repeticiones de Microsatélite/genética , Evolución Biológica , Hibridación Genómica Comparativa
4.
Heliyon ; 10(6): e27435, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545167

RESUMEN

The butterflyfishes (Chaetodontidae), emblematic inhabitants of coral reef environments, encompass the majority of known coralivorous species and show one of the highest hybridization rates known among vertebrates, making them an important evolutionary model. The vast knowledge about their life history and phylogenetic relationships contrasts with scarce information on their karyotype evolution. Aiming to expand the cytogenetic data of butterflyfishes and evaluate their karyotype evolution in association with evolutionary aspects, we conducted an extensive cytogenetic analysis in 20 species (Heniochus pleurotaenia and 19 Chaetodon spp.) from the Atlantic and Indo-Pacific regions, comparing the karyotype macrostructure and the arrangement of the 18S and 5S rDNA repetitive DNA classes in their chromosomes. The results demonstrate that butterflyfishes underwent a period of karyotypic stasis, as evidenced by their homoploid and structurally identical basal karyotype, which has 2n = 48 acrocentric chromosomes and is shared by 90% of species. Only C. trifascialis (2n = 48; FN = 50) and C. andamanensis (2n = 48; FN = 52) stood out because they both had karyotypes that diverged due to pericentric inversions. The microstructural arrays of 18S rDNA and 5S rDNA sequences were primarily comprised by single and independent loci on homologous chromosomes, indicating that there was little reshuffling among sets of orthologue chromosomes of species. Geographical comparisons revealed similar karyotypes between individuals of C. striatus from the Greater Caribbean and those of the coast of Brazil, corroborating previous data of gene flow through Amazon/Orinoco plume. The conservative chromosomal patterns in the butterflyfishes, likely overcome the limitations related to segregation and pairing of heterospecific complements and reinforce their contribution to the high degree of hybrid viability and introgression in Chaetodon species.

6.
J Mol Evol ; 91(6): 976-989, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010517

RESUMEN

Adaptation to different salinity environments can enhance morphological and genomic divergence between related aquatic taxa. Species of prawns in the genus Macrobrachium naturally inhabit different osmotic niches and possess distinctive lifecycle traits associated with salinity tolerance. This study was conducted to investigate the patterns of adaptive genomic divergence during freshwater colonization in 34 Macrobrachium species collected from four continents; Australia, Asia, North and South America. Genotyping-by-sequencing (GBS) technique identified 5018 loci containing 82,636 single nucleotide polymorphisms (SNPs) that were used to reconstruct a phylogenomic tree. An additional phylogeny was reconstructed based on 43 candidate genes, previously identified as being potentially associated with freshwater adaptation. Comparison of the two phylogenetic trees revealed contrasting topologies. The GBS tree indicated multiple independent continent-specific invasions into freshwater by Macrobrachium lineages following common marine ancestry, as species with abbreviated larval development (ALD), i.e., species having a full freshwater life history, appeared reciprocally monophyletic within each continent. In contrast, the candidate gene tree showed convergent evolution for all ALD species worldwide, forming a single, well-supported clade. This latter pattern is likely the result of common evolutionary pressures selecting key mutations favored in continental freshwater habitats Results suggest that following multiple independent invasions into continental freshwaters at different evolutionary timescales, Macrobrachium taxa experienced adaptive genomic divergence, and in particular, convergence in the same genomic regions with parallel shifts in specific conserved phenotypic traits, such as evolution of larger eggs with abbreviated larval developmental.


Asunto(s)
Palaemonidae , Animales , Palaemonidae/genética , Filogenia , Genómica , Agua Dulce , Genoma/genética
7.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686460

RESUMEN

Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.


Asunto(s)
Characiformes , Animales , ADN Satélite/genética , Cromosomas Sexuales/genética , Aberraciones Cromosómicas , Cariotipificación
8.
Genes (Basel) ; 14(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37761802

RESUMEN

The plecos (Loricariidae) fish represent a great model for cytogenetic investigations due to their variety of karyotypes, including diploid and polyploid genomes, and different types of sex chromosomes. In this study we investigate Transancistrus santarosensis a rare loricariid endemic to Ecuador, integrating cytogenetic methods with specimens' molecular identification by mtDNA, to describe the the species karyotype. We aim to verify whether sex chromosomes are cytologically identifiable and if they are associated with the accumulation of repetitive sequences present in other species of the family. The analysis of the karyotype (2n = 54 chromosomes) excludes recent centric fusion and pericentromeric inversion and suggests the presence of a ZZ/ZW sex chromosome system at an early stage of differentiation: the W chromosome is degenerated but is not characterized by the presence of differential sex-specific repetitive DNAs. Data indicate that although T. santarosensis has retained the ancestral diploid number of Loricariidae, it accumulated heterochromatin and shows non-syntenic ribosomal genes localization, chromosomal traits considered apomorphic in the family.


Asunto(s)
Bagres , Cromosomas Sexuales , Masculino , Animales , Femenino , Cromosomas Sexuales/genética , Cariotipo , Cariotipificación , Genoma , Genómica , Bagres/genética
9.
Sci Rep ; 13(1): 15756, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735233

RESUMEN

The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.


Asunto(s)
Bagres , Animales , Bagres/genética , Hibridación Fluorescente in Situ , Filogenia , Cromosomas Sexuales/genética , Cromosoma Y
10.
Genes (Basel) ; 14(2)2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36833233

RESUMEN

Ancistrus Kner, 1854, is the most diverse genus among the Ancistrini (Loricariidae) with 70 valid species showing a wide geographic distribution and great taxonomic and systematic complexity. To date, about 40 Ancistrus taxa have been karyotyped, all from Brazil and Argentina, but the statistic is uncertain because 30 of these reports deal with samples that have not yet been identified at the species level. This study provides the first cytogenetic description of the bristlenose catfish, Ancistrus clementinae Rendahl, 1937, a species endemic to Ecuador, aiming to verify whether a sex chromosome system is identifiable in the species and, if so, which, and if its differentiation is associated with the presence of repetitive sequences reported for other species of the family. We associated the karyotype analysis with the COI molecular identification of the specimens. Karyotype analysis suggested the presence of a ♂ZZ/♀ZW1W2 sex chromosome system, never detected before in Ancistrus, with both W1W2 chromosomes enriched with heterochromatic blocks and 18S rDNA, in addition to GC-rich repeats (W2). No differences were observed between males and females in the distribution of 5S rDNA or telomeric repeats. Cytogenetic data here obtained confirm the huge karyotype diversity of Ancistrus, both in chromosome number and sex-determination systems.


Asunto(s)
Bagres , Cromosomas Sexuales , Masculino , Animales , Femenino , Ecuador , Cariotipo , Bagres/genética , ADN Ribosómico/genética
11.
Zebrafish ; 19(1): 24-31, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171711

RESUMEN

The order Elopiformes includes fish species of medium to large size with a circumglobal distribution, in both the open sea, coastal, and estuarine waters. The Elopiformes are considered an excellent model for evolutionary studies due to their ample adaptive capacity, which allow them to exploit a range of different ecological niches. In this study, we analyzed the karyotype structure and distribution of two classes of repetitive DNA (microsatellites and transposable elements) in two Elopiformes species (Elops smithi and Megalops atlanticus). The results showed that the microsatellite sequences had a very similar distribution in these species, primarily associated to heterochromatin (centromeres and telomeres), suggesting these sequences contribute to the chromosome structure. In contrast, specific signals detected throughout the euchromatic regions indicate that some of these sequences may play a role in the regulation of gene expression. By contrast, the transposable elements presented a distinct distribution in the two species, pointing to a possible interspecific difference in the function of these sequences in the genomes of the two species. Therefore, the comparative genome mapping provides new insights into the structure and organization of these repetitive sequences in the Elopiformes genome.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos , Pez Cebra , Animales , Mapeo Cromosómico , Elementos Transponibles de ADN , Heterocromatina , Cariotipo
12.
Chromosoma ; 131(1-2): 29-45, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35099570

RESUMEN

Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.


Asunto(s)
Characiformes , Animales , Characiformes/genética , ADN , Evolución Molecular , Femenino , Peces/genética , Genoma , Genómica , Cromosomas Sexuales/genética
13.
Chromosome Res ; 29(3-4): 391-416, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34694531

RESUMEN

Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.


Asunto(s)
Characiformes , Animales , Characiformes/genética , Mapeo Cromosómico , Pintura Cromosómica , Hibridación Genómica Comparativa , Evolución Molecular , Femenino , Humanos , Cromosomas Sexuales/genética
14.
Cells ; 10(6)2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198806

RESUMEN

Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both Alligator spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for Paleosuchus spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with Paleosuchus standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.


Asunto(s)
Caimanes y Cocodrilos/genética , Cromosomas/genética , Evolución Molecular , Cariotipo , Caimanes y Cocodrilos/clasificación , Animales , Hibridación Genómica Comparativa , Hibridación Fluorescente in Situ
15.
Cells ; 10(3)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809726

RESUMEN

Translocation between sex-chromosomes and autosomes generates multiple sex-chromosome systems. It happens unexpectedly, and therefore, the evolutionary meaning is not clear. The current study shows a multiple sex chromosome system comprising three different chromosome pairs in a Taiwanese brown frog (Odorrana swinhoana). The male-specific three translocations created a system of six sex-chromosomes, ♂X1Y1X2Y2X3Y3-♀X1X1X2X2X3X3. It is unique in that the translocations occurred among three out of the six members of potential sex-determining chromosomes, which are known to be involved in sex-chromosome turnover in frogs, and the two out of three include orthologs of the sex-determining genes in mammals, birds and fishes. This rare case suggests sex-specific, nonrandom translocations and thus provides a new viewpoint for the evolutionary meaning of the multiple sex chromosome system.


Asunto(s)
Evolución Molecular , Meiosis , Ranidae/genética , Procesos de Determinación del Sexo , Translocación Genética , Cromosoma X , Cromosoma Y , Animales , Femenino , Masculino
16.
Mol Reprod Dev ; 88(2): 119-127, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33438277

RESUMEN

Parthenogenetic species of Caucasian rock lizards of the genus Darevksia are important evidence for reticulate evolution and speciation by hybridization in vertebrates. Female-only lineages formed through interspecific hybridization have been discovered in many groups. Nevertheless, critical mechanisms of oogenesis and specifics of meiosis that provide long-term stability of parthenogenetic species are still unknown. Here we report cytogenetic characteristics of somatic karyotypes and meiotic prophase I nuclei in the diploid parthenogenetic species Darevskia unisexualis from the new population "Keti" in Armenia which contains an odd number of chromosomes 2n = 37, instead of the usual 2n = 38. We revealed 36 acrocentric chromosomes and a single metacentric autosomal chromosome, resulting from Robertsonian translocation. Comparative genomic hybridization revealed that chromosome fusion occurred between two chromosomes inherited from the maternal species, similar to another parthenogenetic species D. rostombekowi. To trace the chromosome behaviour in meiosis, we performed an immunocytochemical study of primary oocytes' spread nuclei and studied chromosome synapsis during meiotic prophase I in D. unisexualis based on analysis of synaptonemal complexes (SCs). We found meiotic SC-trivalent composed of one metacentric and two acrocentric chromosomes. We confirmed that the SC was assembled between homeologous chromosomes inherited from two parental species. Immunostaining of the pachytene and diplotene nuclei revealed a mismatch repair protein MLH1 loaded to all autosomal SC bivalents. Possible mechanisms of meiotic recombination between homeologous chromosomes are discussed.


Asunto(s)
Lagartos/genética , Profase Meiótica I/genética , Homólogo 1 de la Proteína MutL/genética , Animales , Células Cultivadas , Reparación de la Incompatibilidad de ADN , Reordenamiento Génico , Lagartos/fisiología , Partenogénesis , Complejo Sinaptonémico
17.
Ecotoxicol Environ Saf ; 209: 111835, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383344

RESUMEN

The Amazon aquatic ecosystems have been modified by the human population growth, going through changes in their water bodies and aquatic biota. The spectacled alligator (Caiman crocodilus crocodilus) has a wide distribution and adaptability to several environments, even those polluted ones. This study aimed to investigate if a Caiman species living in urban streams of Manaus city (Amazonas State, Brazil) is affected by environmental pollution. For that, it was used classical and molecular cytogenetic procedures, in addition to micronucleus and comet assays. Although the karyotype macrostructure remains unaltered (2 n = 42 chromosomes; 24 t + 18 m/sm; NF = 60), the genotoxic analysis and the cytogenetic mapping of repetitive DNA sequences demonstrated that polluted environments alter the genome of the specimens, affecting both the chromosomal organization and the genetic material.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Daño del ADN , Ecosistema , Humanos
18.
Chromosoma ; 129(3-4): 275-283, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33123817

RESUMEN

Darevskia rostombekowi, the most outstanding of the seven known parthenogenetic species in the genus Darevskia, is the result of an ancestral cross between two bisexual species Darevskia raddei and Darevskia portschinskii. The chromosomal set of this species includes a unique submetacentric autosomal chromosome; the origin of this chromosome was unresolved as only acrocentric chromosomes are described in the karyotypes of Darevskia genus normally. Here, we applied a suite of molecular cytogenetic techniques, including the mapping of telomeric (TTAGGG) n repeats using fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and whole-chromosome painting (WCP) in both D. rostombekowi and parental (D. portschinskii and D. raddei) species. The obtained results in total suggest that a de novo chromosomal rearrangement via Robertsonian translocation (centric fusion) between two maternal (D. raddei) acrocentric chromosomes of different size was involved in the formation of this unique submetacentric chromosome present in the parthenogenetic species D. rostombekowi. Our findings provide new data in specific and rapid evolutional processes of a unisexual reptile species karyotype.


Asunto(s)
Evolución Molecular , Hibridación Genética , Cariotipo , Lagartos/genética , Partenogénesis/genética , Translocación Genética , Animales , Mapeo Cromosómico , Hibridación Genómica Comparativa , Femenino , Hibridación Fluorescente in Situ , Herencia Materna , Cromosomas Sexuales , Telómero
19.
Biol Reprod ; 103(6): 1289-1299, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32940693

RESUMEN

In animals, spermatogonial transplantation in sterile adult males is widely developed; however, despite its utility, ovarian germ cell transplantation is not well developed. We previously showed that the interspecific hybrid offspring of sciaenid was a suitable model for germ cell transplantation studies as they have germ cell-less gonads. However, all these gonads have testis-like characteristics. Here, we tested whether triploidization in hybrid embryos could result in germ cell-less ovary development. Gonadal structure dimorphism and sex-specific gene expression patterns were examined in 6-month-old triploid hybrids (3nHybs). Thirty-one percent of 3nHybs had germ cell-less gonads with an ovarian cavity. cyp19a1a and foxl2, ovarian differentiation-related genes, were expressed in these gonads, whereas dmrt1 and vasa were not expressed, suggesting ovary-like germ cell-less gonad development. Some (26%) 3nHybs had testis-like germ cell-less gonads. Ovarian germ cells collected from homozygous green fluorescent protein (GFP) transgenic blue drum (BD) (Nibea mitsukurii) were transplanted into 6-month-old 3nHybs gonads via the urogenital papilla or oviduct. After 9 months, the recipients were crossed with wild type BD. Among the six 3nHyb recipients that survived, one female and one male produced fertile eggs and motile sperm carrying gfp-specific DNA sequences. Progeny tests revealed that all F1 offspring possessed gfp-specific DNA sequences, suggesting that these recipients produced only donor-derived eggs or sperm. Histological observation confirmed donor-derived gametogenesis in the 3nHyb recipients' gonads. Overall, triploidization reduces male-biased sex differentiation in germ cell-less gonads. We report, for the first time, donor-derived egg production in an animal via direct ovarian germ cell transplantation into a germ cell-less ovary.


Asunto(s)
Peces/genética , Peces/fisiología , Células Germinativas/trasplante , Gónadas/citología , Triploidía , Animales , Animales Modificados Genéticamente , Aromatasa/genética , Aromatasa/metabolismo , Frío , ARN Helicasas DEAD-box , Embrión no Mamífero , Femenino , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Regulación de la Expresión Génica , Masculino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Sci Rep ; 10(1): 12499, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719365

RESUMEN

Most of snakes exhibit a ZZ/ZW sex chromosome system, with different stages of degeneration. However, undifferentiated sex chromosomes and unique Y sex-linked markers, suggest that an XY system has also evolved in ancestral lineages. Comparative cytogenetic mappings revealed that several genes share ancestry among X, Y and Z chromosomes, implying that XY and ZW may have undergone transitions during serpent's evolution. In this study, we performed a comparative cytogenetic analysis to identify homologies of sex chromosomes across ancestral (Henophidia) and more recent (Caenophidia) snakes. Our analysis suggests that, despite ~ 85 myr of independent evolution, henophidians and caenophidians retained conserved synteny over much of their genomes. However, our findings allowed us to discover that ancestral and recent lineages of snakes do not share the same sex chromosome and followed distinct pathways for sex chromosomes evolution.


Asunto(s)
Evolución Molecular , Filogenia , Cromosomas Sexuales/genética , Serpientes/genética , Animales , Pintura Cromosómica , Cromosomas Artificiales Bacterianos/genética , Hibridación Genómica Comparativa , ADN/genética , Femenino , Genoma , Heterocromatina/genética , Masculino , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA