Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Gut ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38754953

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.

2.
Mol Oncol ; 18(6): 1531-1551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38357786

RESUMEN

Chromosomal instability (CIN) is a hallmark of cancer aggressiveness, providing genetic plasticity and tumor heterogeneity that allows the tumor to evolve and adapt to stress conditions. CIN is considered a cancer therapeutic biomarker because healthy cells do not exhibit CIN. Despite recent efforts to identify therapeutic strategies related to CIN, the results obtained have been very limited. CIN is characterized by a genetic signature where a collection of genes, mostly mitotic regulators, are overexpressed in CIN-positive tumors, providing aggressiveness and poor prognosis. We attempted to identify new therapeutic strategies related to CIN genes by performing a drug screen, using cells that individually express CIN-associated genes in an inducible manner. We find that the overexpression of targeting protein for Xklp2 (TPX2) enhances sensitivity to the proto-oncogene c-Src (SRC) inhibitor dasatinib due to activation of the Yes-associated protein 1 (YAP) pathway. Furthermore, using breast cancer data from The Cancer Genome Atlas (TCGA) and a cohort of cancer-derived patient samples, we find that both TPX2 overexpression and YAP activation are present in a significant percentage of cancer tumor samples and are associated with poor prognosis; therefore, they are putative biomarkers for selection for dasatinib therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Proteínas de Ciclo Celular , Dasatinib , Proteínas Asociadas a Microtúbulos , Proto-Oncogenes Mas , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Dasatinib/farmacología , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos
3.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698938

RESUMEN

Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1ß production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/genética , Interleucina-1beta/genética , Ratones Endogámicos C57BL , Quinasa Tipo Polo 1
4.
Front Cell Dev Biol ; 11: 1209136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342233

RESUMEN

Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.

5.
Pharmaceutics ; 15(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111716

RESUMEN

Rigosertib (ON-01910.Na) is a small-molecule member of the novel synthetic benzyl-styryl-sulfonate family. It is currently in phase III clinical trials for several myelodysplastic syndromes and leukemias and is therefore close to clinical translation. The clinical progress of rigosertib has been hampered by a lack of understanding of its mechanism of action, as it is currently considered a multi-target inhibitor. Rigosertib was first described as an inhibitor of the mitotic master regulator Polo-like kinase 1 (Plk1). However, in recent years, some studies have shown that rigosertib may also interact with the PI3K/Akt pathway, act as a Ras-Raf binding mimetic (altering the Ras signaling pathway), as a microtubule destabilizing agent, or as an activator of a stress-induced phospho-regulatory circuit that ultimately hyperphosphorylates and inactivates Ras signaling effectors. Understanding the mechanism of action of rigosertib has potential clinical implications worth exploring, as it may help to tailor cancer therapies and improve patient outcomes.

6.
Cell Death Differ ; 29(8): 1474-1485, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058575

RESUMEN

Alteration of centrosome function and dynamics results in major defects during chromosome segregation and is associated with primary autosomal microcephaly (MCPH). Despite the knowledge accumulated in the last few years, why some centrosomal defects specifically affect neural progenitors is not clear. We describe here that the centrosomal kinase PLK1 controls centrosome asymmetry and cell fate in neural progenitors during development. Gain- or loss-of-function mutations in Plk1, as well as deficiencies in the MCPH genes Cdk5rap2 (MCPH3) and Cep135 (MCPH8), lead to abnormal asymmetry in the centrosomes carrying the mother and daughter centriole in neural progenitors. However, whereas loss of MCPH proteins leads to increased centrosome asymmetry and microcephaly, deficient PLK1 activity results in reduced asymmetry and increased expansion of neural progenitors and cortical growth during mid-gestation. The combination of PLK1 and MCPH mutations results in increased microcephaly accompanied by more aggressive centrosomal and mitotic abnormalities. In addition to highlighting the delicate balance in the level and activity of centrosomal regulators, these data suggest that human PLK1, which maps to 16p12.1, may contribute to the neurodevelopmental defects associated with 16p11.2-p12.2 microdeletions and microduplications in children with developmental delay and dysmorphic features.


Asunto(s)
Proteínas de Ciclo Celular , Microcefalia , Células-Madre Neurales , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Centrosoma/metabolismo , Niño , Segregación Cromosómica , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
7.
Front Oncol ; 11: 752933, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804941

RESUMEN

Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.

8.
Biomed Pharmacother ; 144: 112347, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34700228

RESUMEN

New therapeutic targets are revolutionizing colorectal cancer clinical management, opening new horizons in metastatic patients' outcome. Polo Like Kinase1 (PLK1) inhibitors have high potential as antitumoral agents, however, the emergence of drug resistance is a major challenge for their use in clinical practice. Overcoming this challenge represents a hot topic in current drug discovery research. BI2536-resistant colorectal cancer cell lines HT29R, RKOR, SW837R and HCT116R, were generated in vitro and validated by IG50 assays and xenografts models by the T/C ratio. Exons 1 and 2 of PLK1 gene were sequenced by Sanger method. AXL pathway, Epithelial-to-Mesenchymal transition (EMT) and Multidrug Resistance (MDR1) were studied by qPCR and western blot in resistant cells. Simvastatin as a re-sensitizer drug was tested in vitro and the drug combination strategies were validated in vitro and in vivo. PLK1 gene mutation R136G was found for RKOR. AXL pathway trough TWIST1 transcription factor was identified as one of the mechanisms involved in HT29R, SW837R and HCT116R lines, inducing EMT and upregulation of MDR1. Simvastatin was able to impair the mechanisms activated by adaptive resistance and its combination with BI2536 re-sensitized resistant cells in vitro and in vivo. Targeting the mevalonate pathway contributes to re-sensitizing BI2536-resistant cells in vitro and in vivo, raising as a new strategy for the clinical management of PLK1 inhibitors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Ácido Mevalónico/metabolismo , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Pteridinas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Simvastatina/farmacología , Proteína 1 Relacionada con Twist/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Células HCT116 , Células HT29 , Humanos , Ratones Desnudos , Mutación , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Proteína 1 Relacionada con Twist/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl , Quinasa Tipo Polo 1
9.
Cell Death Differ ; 27(8): 2451-2467, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32080348

RESUMEN

The cellular mechanisms controlling cell fate in self-renewal tissues remain unclear. Cell cycle failure often leads to an apoptosis anti-oncogenic response. We have inactivated Cdk1 or Polo-like-1 kinases, essential targets of the mitotic checkpoints, in the epithelia of skin and oral mucosa. Here, we show that inactivation of the mitotic kinases leading to polyploidy in vivo, produces a fully differentiated epithelium. Cells within the basal layer aberrantly differentiate and contain large or various nuclei. Freshly isolated KO cells were also differentiated and polyploid. However, sustained metaphase arrest downstream of the spindle anaphase checkpoint (SAC) due to abrogation of CDC20 (essential cofactor of anaphase-promoting complex), impaired squamous differentiation and resulted in apoptosis. Therefore, upon prolonged arrest keratinocytes need to slip beyond G2 or mitosis in order to initiate differentiation. The results altogether demonstrate that mitotic checkpoints drive squamous cell fate towards differentiation or apoptosis in response to genetic damage.


Asunto(s)
Apoptosis , Diferenciación Celular , Epitelio/patología , Fase G2 , Mitosis , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citocinesis , Epidermis/patología , Humanos , Hiperplasia , Ratones , Poliploidía , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
10.
Cell Rep ; 28(3): 597-604.e4, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315040

RESUMEN

The recent availability of somatic haploid cell lines has provided a unique tool for genetic studies in mammals. However, the percentage of haploid cells rapidly decreases in these cell lines, which we recently showed is due to their overgrowth by diploid cells present in the cultures. Based on this property, we have now performed a phenotypic chemical screen in human haploid HAP1 cells aiming to identify compounds that facilitate the maintenance of haploid cells. Our top hit was 10-Deacetyl-baccatin-III (DAB), a chemical precursor in the synthesis of Taxol, which selects for haploid cells in HAP1 and mouse haploid embryonic stem cultures. Interestingly, DAB also enriches for diploid cells in mixed cultures of diploid and tetraploid cells, including in the colon cancer cell line DLD-1, revealing a general strategy for selecting cells with lower ploidy in mixed populations of mammalian cells.


Asunto(s)
Células Madre Embrionarias/citología , Haploidia , Ensayos Analíticos de Alto Rendimiento/métodos , Ploidias , Taxoides/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Separación Celular , Diploidia , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Mitosis/efectos de los fármacos , Mitosis/genética , Taxoides/química
11.
Genes (Basel) ; 10(3)2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30862113

RESUMEN

The master mitotic regulator, Polo-like kinase 1 (Plk1), is an essential gene for the correct execution of cell division. Plk1 has strong clinical relevance, as it is considered a bona fide cancer target, it is found overexpressed in a large collection of different cancer types and this tumoral overexpression often correlates with poor patient prognosis. All these data led the scientific community to historically consider Plk1 as an oncogene. Although there is a collection of scientific reports showing how Plk1 can contribute to tumor progression, recent data from different laboratories using mouse models, show that Plk1 can surprisingly play as a tumor suppressor. Therefore, the fact that Plk1 is an oncogene is now under debate. This review summarizes the proposed mechanisms by which Plk1 can play as an oncogene or as a tumor suppressor, and extrapolates this information to clinical features.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Humanos , Mitosis , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
12.
Nat Commun ; 9(1): 3012, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069007

RESUMEN

Polo-like kinase 1 (Plk1) is overexpressed in a wide spectrum of human tumors, being frequently considered as an oncogene and an attractive cancer target. However, its contribution to tumor development is unclear. Using a new inducible knock-in mouse model we report here that Plk1 overexpression results in abnormal chromosome segregation and cytokinesis, generating polyploid cells with reduced proliferative potential. Mechanistically, these cytokinesis defects correlate with defective loading of Cep55 and ESCRT complexes to the abscission bridge, in a Plk1 kinase-dependent manner. In vivo, Plk1 overexpression prevents the development of Kras-induced and Her2-induced mammary gland tumors, in the presence of increased rates of chromosome instability. In patients, Plk1 overexpression correlates with improved survival in specific breast cancer subtypes. Therefore, despite the therapeutic benefits of inhibiting Plk1 due to its essential role in tumor cell cycles, Plk1 overexpression has tumor-suppressive properties by perturbing mitotic progression and cytokinesis.


Asunto(s)
Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Inestabilidad Cromosómica/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Centrosoma/metabolismo , Segregación Cromosómica , Citocinesis , Modelos Animales de Enfermedad , Embrión de Mamíferos/citología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Oncogenes , Quinasa Tipo Polo 1
13.
Nat Med ; 23(8): 964-974, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28692064

RESUMEN

Polo-like kinase 1 (PLK1), an essential regulator of cell division, is currently undergoing clinical evaluation as a target for cancer therapy. We report an unexpected function of Plk1 in sustaining cardiovascular homeostasis. Plk1 haploinsufficiency in mice did not induce obvious cell proliferation defects but did result in arterial structural alterations, which frequently led to aortic rupture and death. Specific ablation of Plk1 in vascular smooth muscle cells (VSMCs) led to reduced arterial elasticity, hypotension, and an impaired arterial response to angiotensin II in vivo. Mechanistically, we found that Plk1 regulated angiotensin II-dependent activation of RhoA and actomyosin dynamics in VSMCs in a mitosis-independent manner. This regulation depended on Plk1 kinase activity, and the administration of small-molecule Plk1 inhibitors to angiotensin II-treated mice led to reduced arterial fitness and an elevated risk of aneurysm and aortic rupture. We thus conclude that a partial reduction of Plk1 activity that does not block cell division can nevertheless impair aortic homeostasis. Our findings have potentially important implications for current approaches aimed at PLK1 inhibition for cancer therapy.


Asunto(s)
Angiotensina II/metabolismo , Aneurisma de la Aorta/genética , Rotura de la Aorta/genética , Proteínas de Ciclo Celular/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al GTP rho/metabolismo , Animales , Aorta/metabolismo , Aorta/ultraestructura , Aneurisma de la Aorta/metabolismo , Rotura de la Aorta/metabolismo , Presión Sanguínea , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Homeostasis/genética , Hipotensión/genética , Immunoblotting , Ratones , Microscopía Electrónica de Transmisión , Mitosis , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Rigidez Vascular/genética , Proteína de Unión al GTP rhoA , Quinasa Tipo Polo 1
14.
Bioessays ; 38 Suppl 1: S96-S106, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27417127

RESUMEN

Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica , Citocinesis , Mitosis , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Huso Acromático/metabolismo , Animales , Femenino , Masculino , Ratones , Huso Acromático/fisiología , Quinasa Tipo Polo 1
15.
Nat Commun ; 7: 11389, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27091106

RESUMEN

Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal.


Asunto(s)
Aurora Quinasa A/genética , Vesículas Citoplasmáticas/inmunología , Activación de Linfocitos/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/inmunología , Azepinas/farmacología , Complejo CD3/genética , Complejo CD3/inmunología , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/ultraestructura , Femenino , Regulación de la Expresión Génica , Humanos , Sinapsis Inmunológicas/efectos de los fármacos , Sinapsis Inmunológicas/genética , Interleucina-2/genética , Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Activación de Linfocitos/efectos de los fármacos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/inmunología , Masculino , Ratones , Ratones Transgénicos , Microtúbulos/efectos de los fármacos , Microtúbulos/inmunología , Microtúbulos/ultraestructura , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/ultraestructura
16.
Mol Cell Biol ; 35(20): 3566-78, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26240282

RESUMEN

Aurora kinase B, one of the three members of the mammalian Aurora kinase family, is the catalytic component of the chromosomal passenger complex, an essential regulator of chromosome segregation in mitosis. Aurora B is overexpressed in human tumors although whether this kinase may function as an oncogene in vivo is not established. Here, we report a new mouse model in which expression of the endogenous Aurkb locus can be induced in vitro and in vivo. Overexpression of Aurora B in cultured cells induces defective chromosome segregation and aneuploidy. Long-term overexpression of Aurora B in vivo results in aneuploidy and the development of multiple spontaneous tumors in adult mice, including a high incidence of lymphomas. Overexpression of Aurora B also results in a reduced DNA damage response and decreased levels of the p53 target p21(Cip1) in vitro and in vivo, in line with an inverse correlation between Aurora B and p21(Cip1) expression in human leukemias. Thus, overexpression of Aurora B may contribute to tumor formation not only by inducing chromosomal instability but also by suppressing the function of the cell cycle inhibitor p21(Cip1).


Asunto(s)
Aneuploidia , Aurora Quinasa B/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Silenciador del Gen , Ratones Endogámicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
17.
Blood ; 126(14): 1707-14, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26185128

RESUMEN

Polyploidization in megakaryocytes is achieved by endomitosis, a specialized cell cycle in which DNA replication is followed by aberrant mitosis. Typical mitotic regulators such as Aurora kinases or Cdk1 are dispensable for megakaryocyte maturation, and inhibition of mitotic kinases may in fact promote megakaryocyte maturation. However, we show here that Polo-like kinase 1 (Plk1) is required for endomitosis, and ablation of the Plk1 gene in megakaryocytes results in defective polyploidization accompanied by mitotic arrest and cell death. Lack of Plk1 results in defective centrosome maturation and aberrant spindle pole formation, thus impairing the formation of multiple poles typically found in megakaryocytes. In these conditions, megakaryocytes arrest for a long time in mitosis and frequently die. Mitotic arrest in wild-type megakaryocytes treated with Plk1 inhibitors or Plk1-null cells is triggered by the spindle assembly checkpoint (SAC), and can be rescued in the presence of SAC inhibitors. These data suggest that, despite the dispensability of proper chromosome segregation in megakaryocytes, an endomitotic SAC is activated in these cells upon Plk1 inhibition. SAC activation results in defective maturation of megakaryocytes and cell death, thus raising a note of caution in the use of Plk1 inhibitors in therapeutic strategies based on polyploidization regulators.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Megacariocitos/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas/deficiencia , Trombocitopenia/metabolismo , Animales , Diferenciación Celular/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Quinasa Tipo Polo 1
18.
Nat Cell Biol ; 16(6): 504-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24875738

RESUMEN

Despite the widespread occurrence of aneuploidy in cancer cells, the molecular causes for chromosomal instability are not well established. Cyclin B2 is now shown to control a pathway - involving the centrosomal kinases aurora A and Plk1 and the tumour suppressor p53 - the alteration of which causes defective centrosome separation, aneuploidy and tumour development.


Asunto(s)
Centrosoma/metabolismo , Segregación Cromosómica , Ciclina B2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Femenino , Masculino
19.
ACS Nano ; 7(9): 7483-94, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23941353

RESUMEN

The interaction of nanoscaled materials with biological systems is currently the focus of a fast-growing area of investigation. Though many nanoparticles interact with cells without acute toxic responses, amino-modified polystyrene nanoparticles are known to induce cell death. We have found that by lowering their dose, cell death remains low for several days while, interestingly, cell cycle progression is arrested. In this scenario, nanoparticle uptake, which we have recently shown to be affected by cell cycle progression, develops differently over time due to the absence of cell division. This suggests that the same nanoparticles can trigger different pathways depending on exposure conditions and the dose accumulated.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Nanopartículas/toxicidad , Nitrógeno/química , Nitrógeno/toxicidad , Poliestirenos/química , Poliestirenos/toxicidad , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Nanopartículas/química , Mucosa Respiratoria/fisiología
20.
Mol Cell ; 48(5): 681-91, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23103253

RESUMEN

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation. Here we show that activation of the HIF2α pathway increases mTORC1 activity by upregulating expression of the amino acid carrier SLC7A5. At the molecular level we also show that HIF2α binds to the Slc7a5 proximal promoter. Our findings identify a link between the oxygen-sensing HIF2α pathway and mTORC1 regulation, revealing the molecular basis of the tumor-promoting properties of HIF2α in von Hippel-Lindau-deficient cells. We also describe relevant physiological scenarios, including those that occur in liver and lung tissue, wherein HIF2α or low-oxygen tension drive mTORC1 activity and SLC7A5 expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Proteínas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Transportador de Aminoácidos Neutros Grandes 1/genética , Hígado/metabolismo , Pulmón/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Ratones SCID , Complejos Multiproteicos , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Proteínas/genética , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Tiempo , Transfección , Carga Tumoral , Regulación hacia Arriba , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA