Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Sci Total Environ ; 948: 174796, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032743

RESUMEN

End-stage kidney disease (ESKD) poses a high burden on patients and health systems. While numerous studies indicate an association between air pollution and chronic kidney disease, studies on ESKD are rare. We investigated the association of long-term exposure to nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC) and ozone (O3) with ESKD incidence in two large population-based European cohorts. We followed individuals in the Austrian Vorarlberg Health Monitoring and Promotion Program (VHM&PP) and the Italian Rome Longitudinal Study (RoLS) using dialysis and kidney transplant registries. Long-term exposure to pollutants was estimated at the home address using Europe-wide land use regression models at 100x100m scale. Hazard ratios (HR) were determined from Cox-proportional hazard models adjusted for individual and neighbourhood level confounders. We observed 501 events among 136,823 individuals in VHM&PP (mean age 42.1 years; crude incidence rate (IR) 0.14 per 1000 person-years) and 3231 events among 1,939,461 individuals in RoLS (mean age 52.4 years; IR 0.22 per 1000 person-years). In VHM&PP, there was no evidence of an association between PM2.5 or O3 and ESKD. There were elevated HRs but with large confidence intervals for BC (HR 1.17 [95 % confidence interval (CI): 0.98, 1.39] for 0.5*10-5/m), and for NO2 (HR 1.14 [95%CI: 0.96, 1.35] for 10 µg/m3). In RoLS, ESKD was associated with PM2.5 (HR 1.37 [95 % CI: 1.06, 1.76] for an increase of 5 µg/m3), while there was no evidence of association with BC, NO2, or O3 exposure. Our study suggests an association of air pollution with ESKD incidence, which differed between the two cohorts and may possibly be influenced by respective air pollution mixtures.

2.
Pediatr Pulmonol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980223

RESUMEN

BACKGROUND: The adverse effects of high air pollution levels on childhood lung function are well-known. Limited evidence exists on the effects of moderate exposure levels during early life on childhood lung function. We investigated the association of exposure to moderate air pollution during pregnancy, infancy, and preschool time with lung function at school age in a Swiss population-based study. METHODS: Fine-scale spatiotemporal model estimates of particulate matter with a diameter <2.5 µm (PM2.5) and nitrogen dioxide (NO2) were linked with residential address histories. We compared air pollution exposures within different time windows (whole pregnancy, first, second, and third trimester of pregnancy, first year of life, preschool age) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) measured cross-sectionally using linear regression models adjusted for potential confounders. RESULTS: We included 2182 children, ages 6-17 years. Prenatal air pollution exposure was associated with reduced lung function at school age. In children aged 12 years, per 10 µg·m-3 increase in PM2.5 during pregnancy, FEV1 was 55 mL lower (95% CI -84 to -25 mL) and FVC 62 mL lower (95% CI -96 to -28 mL). Associations were age-dependent since they were stronger in younger and weaker in older children. PM2.5 exposure after birth was not associated with reduced lung function. There was no association between NO2 exposure and lung function. CONCLUSION: In utero lung development is most sensitive to air pollution exposure, since even modest PM2.5 exposure during the prenatal time was associated with reduced lung function, most prominent in younger children.

3.
Chemosphere ; 363: 142837, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009092

RESUMEN

BACKGROUND: Current knowledge suggests that the gene region containing MUC5B and TOLLIP plays a role in airway defence and airway inflammation, and hence respiratory disease. It is also known that exposure to air pollution increases susceptibility to respiratory disease. We aimed to study whether the effect of air pollutants on the immune response and respiratory symptoms in infants may be modified by polymorphisms in MUC5B and TOLLIP genes. METHODS: 359 healthy term infants from the prospective Basel-Bern Infant Lung Development (BILD) birth cohort were included in the study. The main outcome was the score of weekly assessed respiratory symptoms in the first year of life. Using the candidate gene approach, we selected 10 single nucleotide polymorphisms (SNPs) from the MUC5B and TOLLIP regions. Nitrogen dioxide (NO2) and particulate matter ≤10 µm in aerodynamic diameter (PM10) exposure was estimated on a weekly basis. We used generalised additive mixed models adjusted for known covariates. To validate our results in vitro, cells from a lung epithelial cell line were downregulated in TOLLIP expression and exposed to diesel particulate matter (DPM) and polyinosinic-polycytidylic acid. RESULTS: Significant interaction was observed between modelled air pollution (weekly NO2 exposure) and 5 SNPs within MUC5B and TOLLIP genes regarding respiratory symptoms as outcome: E.g., infants carrying minor alleles of rs5744034, rs3793965 and rs3750920 (all TOLLIP) had an increased risk of respiratory symptoms with increasing NO2 exposure. In vitro experiments showed that cells downregulated for TOLLIP react differently to environmental pollutant exposure with DPM and viral stimulation. CONCLUSION: Our findings suggest that the effect of air pollution on respiratory symptoms in infancy may be influenced by the genotype of specific SNPs from the MUC5B and TOLLIP regions. For validation of the findings, we provided in vitro evidence for the interaction of TOLLIP with air pollution.

4.
Front Epidemiol ; 4: 1327218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863881

RESUMEN

Background: Many studies reported associations between long-term exposure to environmental factors and mortality; however, little is known on the combined effects of these factors and health. We aimed to evaluate the association between external exposome and all-cause mortality in large administrative and traditional adult cohorts in Europe. Methods: Data from six administrative cohorts (Catalonia, Greece, Rome, Sweden, Switzerland and the Netherlands, totaling 27,913,545 subjects) and three traditional adult cohorts (CEANS-Sweden, EPIC-NL-the Netherlands, KORA-Germany, totaling 57,653 participants) were included. Multiple exposures were assigned at the residential addresses, and were divided into three a priori defined domains: (1) air pollution [fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and warm-season Ozone (warm-O3)]; (2) land/built environment (Normalized Difference Vegetation Index-NDVI, impervious surfaces, and distance to water); (3) air temperature (cold- and warm-season mean and standard deviation). Each domain was synthesized through Principal Component Analysis (PCA), with the aim of explaining at least 80% of its variability. Cox proportional-hazards regression models were applied and the total risk of the external exposome was estimated through the Cumulative Risk Index (CRI). The estimates were adjusted for individual- and area-level covariates. Results: More than 205 million person-years at risk and more than 3.2 million deaths were analyzed. In single-component models, IQR increases of the first principal component of the air pollution domain were associated with higher mortality [HRs ranging from 1.011 (95% CI: 1.005-1.018) for the Rome cohort to 1.076 (1.071-1.081) for the Swedish cohort]. In contrast, lower levels of the first principal component of the land/built environment domain, pointing to reduced vegetation and higher percentage of impervious surfaces, were associated with higher risks. Finally, the CRI of external exposome increased mortality for almost all cohorts. The associations found in the traditional adult cohorts were generally consistent with the results from the administrative ones, albeit without reaching statistical significance. Discussion: Various components of the external exposome, analyzed individually or in combination, were associated with increased mortality across European cohorts. This sets the stage for future research on the connections between various exposure patterns and human health, aiding in the planning of healthier cities.

5.
Environ Res ; 254: 119120, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734295

RESUMEN

BACKGROUND: Exposure to air pollution has been proposed as one of the potential risk factors for leukaemia. Work-related formaldehyde exposure is suspected to cause leukaemia. METHODS: We conducted a nested register-based case-control study on leukaemia incidence in the Viadana district, an industrial area for particleboard production in Northern Italy. We recruited 115 cases and 496 controls, frequency-matched by age, between 1999 and 2014. We assigned estimated exposures to particulate matter (PM10, PM2.5), nitrogen dioxide (NO2), and formaldehyde at residential addresses, averaged over the susceptibility window 3rd to 10th year prior to the index date. We considered potential confounding by sex, age, nationality, socio-economic status, occupational exposures to benzene and formaldehyde, and prior cancer diagnoses. RESULTS: There was no association of exposures to PM10, PM2.5, and NO2 with leukaemia incidence. However, an indication of increased risk emerged for formaldehyde, despite wide statistical uncertainty (OR 1.46, 95%CI 0.65-3.25 per IQR-difference of 1.2 µg/m3). Estimated associations for formaldehyde were higher for acute (OR 2.07, 95%CI 0.70-6.12) and myeloid subtypes (OR 1.79, 95%CI 0.64-5.01), and in the 4-km buffer around the industrial facilities (OR 2.78, 95%CI 0.48-16.13), although they remained uncertain. CONCLUSIONS: This was the first study investigating the link between ambient formaldehyde exposure and leukaemia incidence in the general population. The evidence presented suggests an association, although it remains inconclusive, and a potential significance of emissions related to industrial activities in the district. Further research is warranted in larger populations incorporating data on other potential risk factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Formaldehído , Leucemia , Material Particulado , Italia/epidemiología , Humanos , Leucemia/epidemiología , Leucemia/inducido químicamente , Leucemia/etiología , Estudios de Casos y Controles , Masculino , Incidencia , Femenino , Persona de Mediana Edad , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Formaldehído/análisis , Formaldehído/toxicidad , Anciano , Material Particulado/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Dióxido de Nitrógeno/análisis , Adulto Joven
6.
Environ Res ; 252(Pt 3): 118942, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649012

RESUMEN

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/inducido químicamente , Masculino , Femenino , Europa (Continente)/epidemiología , Persona de Mediana Edad , Anciano , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/análisis , Material Particulado/efectos adversos , Adulto
7.
Sci Total Environ ; 928: 172454, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636867

RESUMEN

To improve our understanding of the health impacts of high and low temperatures, epidemiological studies require spatiotemporally resolved ambient temperature (Ta) surfaces. Exposure assessment over various European cities for multi-cohort studies requires high resolution and harmonized exposures over larger spatiotemporal extents. Our aim was to develop daily mean, minimum and maximum ambient temperature surfaces with a 1 × 1 km resolution for Europe for the 2003-2020 period. We used a two-stage random forest modelling approach. Random forest was used to (1) impute missing satellite derived Land Surface Temperature (LST) using vegetation and weather variables and to (2) use the gap-filled LST together with land use and meteorological variables to model spatial and temporal variation in Ta measured at weather stations. To assess performance, we validated these models using random and block validation. In addition to global performance, and to assess model stability, we reported model performance at a higher granularity (local). Globally, our models explained on average more than 81 % and 93 % of the variability in the block validation sets for LST and Ta respectively. Average RMSE was 1.3, 1.9 and 1.7 °C for mean, min and max ambient temperature respectively, indicating a generally good performance. For Ta models, local performance was stable across most of the spatiotemporal extent, but showed lower performance in areas with low observation density. Overall, model stability and performance were lower when using block validation compared to random validation. The presented models will facilitate harmonized high-resolution exposure assignment for multi-cohort studies at a European scale.

8.
Environ Res ; 251(Pt 1): 118630, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452913

RESUMEN

BACKGROUND: Ambient air pollution has been associated with hypertensive disorders of pregnancy (HDP), but few studies rely on assessment of fine-scale variation in air quality, specific subtypes and multi-pollutant exposures. AIM: To study the impact of long-term exposure to individual and mixture of air pollutants on all and specific subtypes of HDP. METHODS: We obtained data from 130,470 liveborn singleton pregnacies in Rome during 2014-2019. Spatiotemporal land-use random-forest models at 1 km spatial resolution assigned to the maternal residential addresses were used to estimate the exposure to particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), and ozone (O3). RESULTS: For PM2.5, PM10 and NO2, there was suggestive evidence of increased risk of preeclampsia (PE, n = 442), but no evidence of increased risk for all subtypes of HDP (n = 2297) and gestational hypertension (GH, n = 1901). For instance, an interquartile range of 7.0 µg/m3 increase in PM2.5 exposure during the first trimester of pregnancy was associated with an odds ratio (OR) of 1.06 (95% confidence interval: 0.81, 1.39) and 1.04 (0.92, 1.17) after adjustment for NO2 and the corresponding results for a 15.7 µg/m3 increase in NO2 after adjustment for PM2.5 were 1.11 (0.92, 1.34) for PE and 0.83 (0.76, 0.90) for HDP. Increased risks for HDP and GH were suggested for O3 in single-pollutant models and for PM after adjustment for NO2, but all other associations were stable or attenuated in two-pollutant models. CONCLUSIONS: The results of our study suggest that PM2.5, PM10 and NO2 increases the risk of PE and that these effects are robust to adjustment for O3 while the increased risks for GH and HDP suggested for O3 attenuated after adjustment for PM or NO2. Additional studies are needed to evaluate the effects of source-specific component of PM on subtypes as well as all types of HDP which would help to target preventive actions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Hipertensión Inducida en el Embarazo , Dióxido de Nitrógeno , Ozono , Material Particulado , Femenino , Humanos , Embarazo , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Material Particulado/análisis , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/inducido químicamente , Ciudad de Roma/epidemiología , Ozono/análisis , Ozono/efectos adversos , Dióxido de Nitrógeno/análisis , Adulto , Exposición a Riesgos Ambientales/efectos adversos , Adulto Joven
9.
Sci Total Environ ; 918: 170550, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38320693

RESUMEN

Detailed spatial models of monthly air pollution levels at a very fine spatial resolution (25 m) can help facilitate studies to explore critical time-windows of exposure at intermediate term. Seasonal changes in air pollution may affect both levels and spatial patterns of air pollution across Europe. We built Europe-wide land-use regression (LUR) models to estimate monthly concentrations of regulated air pollutants (NO2, O3, PM10 and PM2.5) between 2000 and 2019. Monthly average concentrations were collected from routine monitoring stations. Including both monthly-fixed and -varying spatial variables, we used supervised linear regression (SLR) to select predictors and geographically weighted regression (GWR) to estimate spatially-varying regression coefficients for each month. Model performance was assessed with 5-fold cross-validation (CV). We also compared the performance of the monthly LUR models with monthly adjusted concentrations. Results revealed significant monthly variations in both estimates and model structure, particularly for O3, PM10, and PM2.5. The 5-fold CV showed generally good performance of the monthly GWR models across months and years (5-fold CV R2: 0.31-0.66 for NO2, 0.4-0.79 for O3, 0.4-0.78 for PM10, 0.46-0.87 for PM2.5). Monthly GWR models slightly outperformed monthly-adjusted models. Correlations between monthly GWR model were generally moderate to high (Pearson correlation >0.6). In conclusion, we are the first to develop robust monthly LUR models for air pollution in Europe. These monthly LUR models, at a 25 m spatial resolution, enhance epidemiologists to better characterize Europe-wide intermediate-term health effects related to air pollution, facilitating investigations into critical exposure time windows in birth cohort studies.

10.
BMJ Open ; 14(2): e081351, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38423777

RESUMEN

OBJECTIVES: To explore the associations of long-term exposure to air pollution with onset of all human health conditions. DESIGN: Prospective phenome-wide association study. SETTING: Denmark. PARTICIPANTS: All Danish residents aged ≥30 years on 1 January 2000 were included (N=3 323 612). After exclusion of individuals with missing geocoded residential addresses, 3 111 988 participants were available for the statistical analyses. MAIN OUTCOME MEASURE: First registered diagnosis of every health condition according to the International Classification of Diseases, 10th revision, from 2000 to 2017. RESULTS: Long-term exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were both positively associated with the onset of more than 700 health conditions (ie, >80% of the registered health conditions) after correction for multiple testing, while the remaining associations were inverse or insignificant. As regards the most common health conditions, PM2.5 and NO2 were strongest positively associated with chronic obstructive pulmonary disease (PM2.5: HR 1.06 (95% CI 1.05 to 1.07) per 1 IQR increase in exposure level; NO2: 1.14 (95% CI 1.12 to 1.15)), type 2 diabetes (PM2.5: 1.06 (95% CI 1.05 to 1.06); NO2: 1.12 (95% CI 1.10 to 1.13)) and ischaemic heart disease (PM2.5: 1.05 (95% CI 1.04 to 1.05); NO2: 1.11 (95% CI 1.09 to 1.12)). Furthermore, PM2.5 and NO2 were both positively associated with so far unexplored, but highly prevalent outcomes relevant to public health, including senile cataract, hearing loss and urinary tract infection. CONCLUSIONS: The findings of this study suggest that air pollution has a more extensive impact on human health than previously known. However, as this study is the first of its kind to investigate the associations of long-term exposure to air pollution with onset of all human health conditions, further research is needed to replicate the study findings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Mellitus Tipo 2 , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios Prospectivos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis
11.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339851

RESUMEN

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Gástricas , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/etiología , Incidencia , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis
12.
Environ Res ; 246: 118116, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184064

RESUMEN

In the light of growing urbanization and projected temperature increases due to climate change, heat-related mortality in urban areas is a pressing public health concern. Heat exposure and vulnerability to heat may vary within cities depending on structural features and socioeconomic factors. This study examined the effect modification of the temperature-mortality association of three socio-environmental factors in eight Swiss cities and population subgroups (<75 and ≥ 75 years, males, females): urban heat islands (UHI) based on within-city temperature contrasts, residential greenness measured as normalized difference vegetation index (NDVI) and neighborhood socioeconomic position (SEP). We used individual death records from the Swiss National Cohort occurring during the warm season (May to September) in the years 2003-2016. We performed a case time series analysis using conditional quasi-Poisson and distributed lag non-linear models with a lag of 0-3 days. As exposure variables, we used daily maximum temperatures (Tmax) and a binary indicator for warm nights (Tmin ≥20 °C). In total, 53,593 deaths occurred during the study period. Overall across the eight cities, the mortality risk increased by 31% (1.31 relative risk (95% confidence interval: 1.20-1.42)) between 22.5 °C (the minimum mortality temperature) and 35 °C (the 99th percentile) for warm-season Tmax. Stratified analysis suggested that the heat-related risk at 35 °C is 26% (95%CI: -4%, 67%) higher in UHI compared to non-UHI areas. Indications of smaller risk differences were observed between the low vs. high greenness strata (Relative risk difference = 13% (95%CI: -11%; 44%)). Living in low SEP neighborhoods was associated with an increased heat related risk in the non-elderly population (<75 years). Our results indicate that UHI are associated with increased heat-related mortality risk within Swiss cities, and that features beyond greenness are responsible for such spatial risk differences.


Asunto(s)
Calor , Mortalidad , Masculino , Femenino , Humanos , Persona de Mediana Edad , Ciudades/epidemiología , Factores de Tiempo , Suiza/epidemiología , Temperatura
13.
Environ Pollut ; 343: 123097, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065336

RESUMEN

Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 µg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Leucemia , Linfoma , Adulto , Femenino , Humanos , Masculino , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/análisis , Contaminantes Ambientales/análisis , Leucemia/inducido químicamente , Leucemia/epidemiología , Linfoma/inducido químicamente , Linfoma/epidemiología , Potasio/análisis , Contaminantes Atmosféricos/análisis
14.
Sci Total Environ ; 912: 168789, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37996018

RESUMEN

It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Gástricas , Humanos , Material Particulado/análisis , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/epidemiología , Incidencia , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis
15.
Environ Health Perspect ; 131(12): 127003, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039140

RESUMEN

BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Programas Nacionales de Salud , Contaminación del Aire/análisis , Material Particulado/análisis , Europa (Continente)/epidemiología , Estudios de Cohortes , Canadá/epidemiología
16.
Environ Health Perspect ; 131(10): 107013, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37878794

RESUMEN

BACKGROUND: Growing epidemiological evidence suggests an adverse relationship between exposure to air pollutants and cognitive health, and this could be related to the effect of air pollution on vascular health. OBJECTIVE: We aim to evaluate the association between air pollution exposure and a magnetic resonance imaging (MRI) marker of cerebral vascular burden, white matter hyperintensities (WMH). METHODS: This cross-sectional analysis used data from the French Three-City Montpellier study. Randomly selected participants 65-80 years of age underwent an MRI examination to estimate their total and regional cerebral WMH volumes. Exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) at the participants' residential address during the 5 years before the MRI examination was estimated with land use regression models. Multinomial and binomial logistic regression assessed the associations between exposure to each of the three pollutants and categories of total and lobar WMH volumes. RESULTS: Participants' (n=582) median age at MRI was 70.7 years [interquartile range (IQR): 6.1], and 52% (n=300) were women. Median exposure to air pollution over the 5 years before MRI acquisition was 24.3 (IQR: 1.7) µg/m3 for PM2.5, 48.9 (14.6) µg/m3 for NO2, and 2.66 (0.60) 10-5/m for BC. We found no significant association between exposure to the three air pollutants and total WMH volume. We found that PM2.5 exposure was significantly associated with higher risk of temporal lobe WMH burden [odds ratio (OR) for an IQR increase=1.82 (95% confidence interval: 1.41, 2.36) for the second volume tercile, 2.04 (1.59, 2.61) for the third volume tercile, reference: first volume tercile]. Associations for other regional WMH volumes were inconsistent. CONCLUSION: In this population-based study in older adults, PM2.5 exposure was associated with increased risk of high WMH volume in the temporal lobe, strengthening the evidence on PM2.5 adverse effect on the brain. Further studies looking at different markers of cerebrovascular damage are still needed to document the potential vascular effects of air pollution. https://doi.org/10.1289/EHP12231.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Sustancia Blanca , Humanos , Femenino , Anciano , Masculino , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/química , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Dióxido de Nitrógeno
17.
Environ Res ; 239(Pt 1): 117230, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37806476

RESUMEN

BACKGROUND: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 µg/m³ NO2, 1.04 (0.82, 1.33) per 5 µg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 µg/m³ O3. CONCLUSIONS: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Mieloma Múltiple , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Mieloma Múltiple/inducido químicamente , Mieloma Múltiple/epidemiología , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
18.
Lancet Reg Health Eur ; 34: 100729, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37691742

RESUMEN

Background: While the adverse effects of short-term ambient ozone exposure on lung function are well-documented, the impact of long-term exposure remains poorly understood, especially in adults. Methods: We aimed to investigate the association between long-term ozone exposure and lung function decline. The 3014 participants were drawn from 17 centers across eight countries, all of which were from the European Community Respiratory Health Survey (ECRHS). Spirometry was conducted to measure pre-bronchodilation forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at approximately 35, 44, and 55 years of age. We assigned annual mean values of daily maximum running 8-h average ozone concentrations to individual residential addresses. Adjustments were made for PM2.5, NO2, and greenness. To capture the ozone-related change in spirometric parameters, our linear mixed effects regression models included an interaction term between long-term ozone exposure and age. Findings: Mean ambient ozone concentrations were approximately 65 µg/m³. A one interquartile range increase of 7 µg/m³ in ozone was associated with a faster decline in FEV1 of -2.08 mL/year (95% confidence interval: -2.79, -1.36) and in FVC of -2.86 mL/year (-3.73, -1.99) mL/year over the study period. Associations were robust after adjusting for PM2.5, NO2, and greenness. The associations were more pronounced in residents of northern Europe and individuals who were older at baseline. No consistent associations were detected with the FEV1/FVC ratio. Interpretation: Long-term exposure to elevated ambient ozone concentrations was associated with a faster decline of spirometric lung function among middle-aged European adults over a 20-year period. Funding: German Research Foundation.

19.
Environ Int ; 179: 108136, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37598594

RESUMEN

INTRODUCTION: The complex interplay of multiple environmental factors and cardiovascular has scarcely been studied. Within the EXPANSE project, we evaluated the association between long-term exposure to multiple environmental indices and stroke incidence across Europe. METHODS: Participants from three traditional adult cohorts (Germany, Netherlands and Sweden) and four administrative cohorts (Catalonia [region Spain], Rome [city-wide], Greece and Sweden [nationwide]) were followed until incident stroke, death, migration, loss of follow-up or study end. We estimated exposures at residential addresses from different exposure domains: air pollution (nitrogen dioxide (NO2), particulate matter < 2.5 µm (PM2.5), black carbon (BC), ozone), built environment (green/blue spaces, impervious surfaces) and meteorology (seasonal mean and standard deviation of temperatures). Associations between environmental exposures and stroke were estimated in single and multiple-exposure Cox proportional hazard models, and Principal Component (PC) Analyses derived prototypes for specific exposures domains. We carried out random effects meta-analyses by cohort type. RESULTS: In over 15 million participants, increased levels of NO2 and BC were associated with increased higher stroke incidence in both cohort types. Increased Normalized Difference Vegetation Index (NDVI) was associated with a lower stroke incidence in both cohort types, whereas an increase in impervious surface was associated with an increase in stroke incidence. The first PC of the air pollution domain (PM2.5, NO2 and BC) was associated with an increase in stroke incidence. For the built environment, higher levels of NDVI and lower levels of impervious surfaces were associated with a protective effect [%change in HR per 1 unit = -2.0 (95 %CI, -5.9;2.0) and -1.1(95 %CI, -2.0; -0.3) for traditional adult and administrative cohorts, respectively]. No clear patterns were observed for distance to blue spaces or temperature parameters. CONCLUSIONS: We observed increased HRs for stroke with exposure to PM2.5, NO2 and BC, lower levels of greenness and higher impervious surface in single and combined exposure models.


Asunto(s)
Contaminación del Aire , Accidente Cerebrovascular , Adulto , Humanos , Contaminación del Aire/efectos adversos , Entorno Construido , Europa (Continente)/epidemiología , Incidencia , Dióxido de Nitrógeno/efectos adversos , Accidente Cerebrovascular/epidemiología , Temperatura
20.
Br J Cancer ; 129(4): 656-664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37420001

RESUMEN

BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Encefálicas , Ozono , Humanos , Material Particulado/efectos adversos , Dióxido de Nitrógeno , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/etiología , Contaminantes Atmosféricos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA