Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 198: 115891, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101054

RESUMEN

As awareness on the impact of anthropogenic underwater noise on marine life grows, underwater noise measurement programs are needed to determine the current status of marine areas and monitor long-term trends. The Joint Monitoring Programme for Ambient Noise in the North Sea (JOMOPANS) collaborative project was funded by the EU Interreg to collect a unique dataset of underwater noise levels at 19 sites across the North Sea, spanning many different countries and covering the period from 2019 to 2020. The ambient noise from this dataset has been characterised and compared - setting a benchmark for future measurements in the North Sea area. By identifying clusters with similar sound characteristics in three broadband frequency bands (25-160 Hz, 0.2-1.6 kHz, and 2-10 kHz), geographical areas that are similarly affected by sound have been identified. The measured underwater sound levels show a persistent and spatially uniform correlation with wind speed at high frequencies (above 1 kHz) and a correlation with the distance from ships at mid and high frequencies (between 40 Hz and 4 kHz). Correlation with ocean current velocity at low frequencies (up to 200 Hz), which are susceptible to nonacoustic contamination by flow noise, was also evaluated. These correlations were evaluated and simplified linear scaling laws for wind and current speeds were derived. The presented dataset provides a baseline for underwater noise measurements in the North Sea and shows that spatial variability of the dominant sound sources must be considered to predict the impact of noise reduction measures.


Asunto(s)
Acústica , Sonido , Mar del Norte , Ruido , Ambiente , Navíos
3.
J Acoust Soc Am ; 152(1): 295, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35931542

RESUMEN

Application of a kurtosis correction to frequency-weighted sound exposure level (SEL) improved predictions of risk of hearing damage in humans and terrestrial mammals for sound exposures with different degrees of impulsiveness. To assess whether kurtosis corrections may lead to improved predictions for marine mammals, corrections were applied to temporary threshold shift (TTS) growth measurements for harbor porpoises (Phocoena phocoena) exposed to different sounds. Kurtosis-corrected frequency-weighted SEL predicted accurately the growth of low levels of TTS (TTS1-4 < 10 dB) for intermittent sounds with short (1-13 s) silence intervals but was not consistent with frequency-weighted SEL data for continuous sound exposures.


Asunto(s)
Phocoena , Estimulación Acústica , Animales , Fatiga Auditiva , Umbral Auditivo , Audición , Humanos , Ruido/efectos adversos
4.
Mar Pollut Bull ; 179: 113733, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35594641

RESUMEN

Underwater radiated noise from shipping is globally pervasive and can cause deleterious effects on marine life, ranging from behavioural responses to physiological effects. Acoustic modelling makes it possible to map this noise over large areas and long timescales, and to test mitigation scenarios such as ship speed reduction or spatial restrictions. However, such maps must be validated against measurements to ensure confidence in their predictions. This study carried out a multi-site validation of the monthly and annual shipping noise maps for 2019 produced as part of the Joint Monitoring of Ambient Noise in the North Sea (JOMOPANS) programme. Spectral, spatial, and temporal differences between predictions and measurements were analysed, with differences linked to uncertainty in model input data and additional sources of anthropogenic noise in the measurements. Validating shipping noise models in this way ensures they can be applied with confidence in future management decisions to address shipping noise pollution.


Asunto(s)
Ruido , Navíos , Acústica , Mar del Norte , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA