Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2322163121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917014

RESUMEN

Turbulent mixing in the ocean exerts an important control on the rate and structure of the overturning circulation. However, the balance of processes underpinning this mixing is subject to significant uncertainties, limiting our understanding of the overturning's deep upwelling limb. Here, we investigate the hitherto primarily neglected role of tens of thousands of seamounts in sustaining deep-ocean upwelling. Dynamical theory indicates that seamounts may stir and mix deep waters by generating lee waves and topographic wake vortices. At low latitudes, stirring and mixing are predicted to be enhanced by a layered vortex regime in the wakes. Using three realistic regional simulations spanning equatorial to middle latitudes, we show that layered wake vortices and elevated mixing are widespread around seamounts. We identify scalings that relate mixing rate within seamount wakes to topographic and hydrographic parameters. We then apply such scalings to a global seamount dataset and an ocean climatology to show that seamount-generated mixing makes an important contribution to the upwelling of deep waters. Our work thus brings seamounts to the fore of the deep-ocean mixing problem and urges observational, theoretical, and modeling efforts toward incorporating the seamounts' mixing effects in conceptual and numerical ocean circulation models.

2.
Nat Commun ; 12(1): 4348, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272391

RESUMEN

Mid-depth North Pacific waters are rich in nutrients and respired carbon accumulated over centuries. The rates and pathways with which these waters exchange with the surface ocean are uncertain, with divergent paradigms of the Pacific overturning: one envisions bottom waters upwelling to 1.5 km depth; the other confines overturning beneath a mid-depth Pacific shadow zone (PSZ) shielded from mean advection. Here global inverse modelling reveals a PSZ where mean ages exceed 1400 years with overturning beneath. The PSZ is supplied primarily by Antarctic and North-Atlantic ventilated waters diffusing from below and from the south. Half of PSZ waters re-surface in the Southern Ocean, a quarter in the subarctic Pacific. The abyssal North Pacific, despite strong overturning, has mean re-surfacing times also exceeding 1400 years because of diffusion into the overlying PSZ. These results imply that diffusive transports - distinct from overturning transports - are a leading control on Pacific nutrient and carbon storage.

3.
Nat Commun ; 10(1): 2099, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068588

RESUMEN

Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth's climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate-the relative importance of their local versus remote breaking into turbulence-remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models.

4.
Nat Commun ; 8(1): 258, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811497

RESUMEN

Several processes have been hypothesized to explain the slight overall expansion of Antarctic sea ice over the satellite observation era, including externally forced changes in local winds or in the Southern Ocean's hydrological cycle, as well as internal climate variability. Here, we show the critical influence of an ocean-sea-ice feedback. Once initiated by an external perturbation, it may be sufficient to sustain the observed sea-ice expansion in the Ross Sea, the region with the largest and most significant expansion. We quantify the heat trapped at the base of the ocean mixed layer and demonstrate that it is of the same order of magnitude as the latent heat storage due to the long-term changes in sea-ice volume. The evidence thus suggests that the recent ice coverage increase in the Ross Sea could have been achieved through a reorganization of energy within the near-surface ice-ocean system.The mechanisms responsible for the overall expansion of Antarctic sea-ice in recent decades remain unclear. Here, using observations and model results, the authors show that ice-ocean feedbacks, triggered by an external perturbation, could be responsible for changes in sea-ice extent observed in the Ross Sea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA