Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 107(5): e1797-e1806, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35134971

RESUMEN

CONTEXT: Massively parallel sequencing (MPS) technologies have emerged as a first-tier approach for diagnosing several pediatric genetic syndromes. However, MPS has not been systematically integrated into the diagnostic workflow along with clinical/biochemical data for diagnosing 46,XY differences of sex development (DSD). OBJECTIVE: To analyze the contribution of phenotypic classification either alone or in association with genetic evaluations, mainly MPS, for diagnosing a large cohort of 46,XY DSD patients. DESIGN/PATIENTS: 209 nonsyndromic 46,XY DSD index cases from a Brazilian DSD center were included. Patients were initially classified into 3 subgroups according to clinical and biochemical data: gonadal dysgenesis (GD), disorders of androgen secretion/action, and DSD of unknown etiology. Molecular genetic studies were performed by Sanger sequencing and/or MPS. RESULTS: Clinical/biochemical classification into either GD or disorders of hormone secretion/action was obtained in 68.4% of the index cases. Among these, a molecular diagnosis was obtained in 36% and 96.5%, respectively. For the remainder 31.6% classified as DSD of clinically unknown etiology, a molecular diagnosis was achieved in 31.8%. Overall, the molecular diagnosis was achieved in 59.3% of the cohort. The combination of clinical/biochemical and molecular approaches diagnosed 78.9% of the patients. Clinical/biochemical classification matched with the genetic diagnosis in all except 1 case. DHX37 and NR5A1 variants were the most frequent genetic causes among patients with GD and DSD of clinical unknown etiology, respectively. CONCLUSIONS: The combination of clinical/biochemical with genetic approaches significantly improved the diagnosis of 46,XY DSD. MPS potentially decreases the complexity of the diagnostic workup as a first-line approach for diagnosing 46,XY DSD.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Disgenesia Gonadal , Niño , Estudios de Cohortes , Trastorno del Desarrollo Sexual 46,XY/diagnóstico , Trastorno del Desarrollo Sexual 46,XY/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Desarrollo Sexual/genética
2.
Sex Dev ; 16(1): 27-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34518484

RESUMEN

Hypospadias is a common congenital disorder of male genital formation. Children born small for gestational age (SGA) present a high frequency of hypospadias of undetermined etiology. No previous study investigated the molecular etiology of hypospadias in boys born SGA using massively parallel sequencing. Our objective is to report the genetic findings of a cohort of patients born SGA with medium or proximal hypospadias. We identified 46 individuals with this phenotype from a large cohort of 46,XY DSD patients, including 5 individuals with syndromic features. DNA samples from subjects were studied by either whole exome sequencing or target gene panel approach. Three of the syndromic patients have 5 main clinical features of Silver-Russell syndrome (SRS) and were first studied by MLPA. Among the syndromic patients, loss of DNA methylation at the imprinting control region H19/IGF2 was identified in 2 individuals with SRS clinical diagnosis. Two novel pathogenic variants in compound heterozygous state were identified in the CUL7 gene establishing the diagnosis of 3M syndrome in one patient, and a novel homozygous variant in TRIM37 was identified in another boy with Mulibrey nanism phenotype. Among the non-syndromic subjects, 7 rare heterozygous variants were identified in 6 DSD-related genes. However, none of the variants found can explain the phenotype by themselves. In conclusion, a genetic defect that clarifies the etiology of hypospadias was not found in most of the non-syndromic SGA children, supporting the hypothesis that multifactorial causes, new genes, and/or unidentified epigenetic defects may have an influence in this condition.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Hipospadias , Metilación de ADN/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Edad Gestacional , Humanos , Hipospadias/complicaciones , Hipospadias/genética , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-34246795

RESUMEN

Aluminum (Al) and manganese (Mn) can be toxic to aquatic biota and cause endocrine disruption in fish, affecting reproduction. This study evaluates the physiological responses of the ray-finned teleost fish Astyanax altiparanae vitellogenic females after acute exposure (96 h) to Al and Mn (alone and combined) in acid pH followed by the same period of exposure to metal-free water in neutral pH. The aim of this second period of exposure was to assess the recovery capacity from the toxic effects these metals. Five experimental groups were established: a control in neutral pH (Ctrl), and acidic pH (Ac), aluminum (Al), manganese (Mn), and Al + Mn groups, maintaining the acidic pH in the groups to which metals were added. The following biological parameters were evaluated: metal tissue concentration, relative fecundity (RF: absolute fecundity/body mass). Plasma levels of cortisol (proxy for stress) and 17α hydroxyprogesterone (17α-OHP), and gene expression of pituitary lhß mRNA (proxies for final maturation) were measured to evaluate endocrine disruption. In the synchronic exposure, the presence of Mn potentiated the accumulation of Al in gills. The females from acidic pH and Al groups showed a reduced RF. Exposure to Al and Mn triggered an endocrine disruption response, evidenced by a decrease in the plasma concentration of 17α-OHP and cortisol. Despite this anti-steroidogenic effect, no changes occurred in the pituitary gene expression of lhß. The endocrine changes and the metal accumulation were temporary, while the impacts on RF under the experimental conditions suggest permanent impairment in the reproduction of this species.


Asunto(s)
Aluminio/toxicidad , Characidae , Disruptores Endocrinos/toxicidad , Manganeso/toxicidad , Ovario/efectos de los fármacos , 17-alfa-Hidroxiprogesterona/sangre , Aluminio/farmacocinética , Animales , Characidae/fisiología , Ecotoxicología , Disruptores Endocrinos/farmacocinética , Femenino , Fertilidad/efectos de los fármacos , Proteínas de Peces/genética , Hidrocortisona/sangre , Concentración de Iones de Hidrógeno , Manganeso/farmacocinética , Distribución Tisular , Agua/química , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA