RESUMEN
Multiple sclerosis is a chronic inflammatory disease of the central nervous system characterized by autoimmune destruction of the myelin sheath, leading to irreversible and progressive functional deficits in patients. Pre-clinical studies involving the use of neural stem cells (NSCs) have already demonstrated their potential in neuronal regeneration and remyelination. However, the exclusive application of cell therapy has not proved sufficient to achieve satisfactory therapeutic levels. Recognizing these limitations, there is a need to combine cell therapy with other adjuvant protocols. In this context, extracellular vesicles (EVs) can contribute to intercellular communication, stimulating the production of proteins and lipids associated with remyelination and providing trophic support to axons. This study aimed to evaluate the therapeutic efficacy of the combination of NSCs and EVs derived from oligodendrocyte precursor cells (OPCs) in an animal model of multiple sclerosis. OPCs were differentiated from NSCs and had their identity confirmed by gene expression analysis and immunocytochemistry. Exosomes were isolated by differential ultracentrifugation and characterized by Western, transmission electron microscopy and nanoparticle tracking analysis. Experimental therapy of C57BL/6 mice induced with experimental autoimmune encephalomyelitis (EAE) were grouped in control, treated with NSCs, treated with OPC-derived EVs and treated with a combination of both. The treatments were evaluated clinically using scores and body weight, microscopically using immunohistochemistry and immunological profile by flow cytometry. The animals showed significant clinical improvement and weight gain with the treatments. However, only the treatments involving EVs led to immune modulation, changing the profile from Th1 to Th2 lymphocytes. Fifteen days after treatment revealed a reduction in reactive microgliosis and astrogliosis in the groups treated with EVs. However, there was no reduction in demyelination. The results indicate the potential therapeutic use of OPC-derived EVs to attenuate inflammation and promote recovery in EAE, especially when combined with cell therapy.
RESUMEN
This paper reports the case of a female patient who underwent minimally invasive repair of pectus excavatum (MIRPE) in another service that evolved with bar rotation and cardiac perforation caused by the left stabilizer. The unique and frightening aspect of the case is that despite having the stabilizer inside the ventricle, the patient was oligosymptomatic: occasional chest pain and respiratory discomfort. Preoperative imaging showed rotation of the bar with stabilizers within the thoracic cavity. During surgery, intense ossification was observed around the prosthesis and it was noted that the left stabilizer had perforated the patient's left ventricle. Cardiac repair required a Clamshell incision and cardiopulmonary bypass. This case reinforces the validity of late radiological follow-up after MIRPE in an attempt to avoid this type of event, and the need to reevaluate the use of stabilizers perpendicular to the bar since they are not safe to prevent rotation of these implants.
Asunto(s)
Tórax en Embudo , Lesiones Cardíacas , Humanos , Tórax en Embudo/cirugía , Femenino , Lesiones Cardíacas/diagnóstico por imagen , Lesiones Cardíacas/etiología , Lesiones Cardíacas/cirugía , Ventrículos Cardíacos/lesiones , Ventrículos Cardíacos/diagnóstico por imagen , Procedimientos Quirúrgicos Mínimamente Invasivos/métodosRESUMEN
BACKGROUND: Increased costs in the health sector have put considerable strain on the public budgets allocated to pharmaceutical purchases. Faced with such pressures amplified by financial crises and pandemics, national purchasing authorities are presented with a puzzle: how to procure pharmaceuticals of the highest quality for the lowest price. The literature explored a range of impactful factors using data on producer and reference prices, but largely foregone the use of data on individual purchases by diverse public buyers. METHODS: Leveraging the availability of open data in public procurement from official government portals, the article examines the relationship between unit prices and a host of predictors that account for policies that can be amended nationally or locally. The study uses traditional linear regression (OLS) and a machine learning model, random forest, to identify the best models for predicting pharmaceutical unit prices. To explore the association between a wide variety of predictors and unit prices, the study relies on more than 200,000 purchases in more than 800 standardized pharmaceutical product categories from 10 countries and territories. RESULTS: The results show significant price variation of standardized products between and within countries. Although both models present substantial potential for predicting unit prices, the random forest model, which can incorporate non-linear relationships, leads to higher explained variance (R2 = 0.85) and lower prediction error (RMSE = 0.81). CONCLUSIONS: The results demonstrate the potential of i) tapping into large quantities of purchase-level data in the health care sector and ii) using machine learning models for explaining and predicting pharmaceutical prices. The explanatory models identify data-driven policy interventions for decision-makers seeking to improve value for money.
Asunto(s)
Aprendizaje Automático , Humanos , Comercio , Costos de los Medicamentos/estadística & datos numéricos , Preparaciones Farmacéuticas/economía , PredicciónRESUMEN
Background: Spinal ventral root injuries generate significant motoneuron degeneration, which hinders full functional recovery. The poor prognosis of functional recovery can be attributed to the use or combination of different therapeutic approaches. Several molecules have been screened as potential treatments in combination with surgical reimplantation of the avulsed roots, the gold standard approach for such injuries. Among the studied molecules, human natural killer-1 (HNK-1) stands out as it is related to the stimulation of motor axon outgrowth. Therefore, we aimed to comparatively investigate the effects of local administration of an HNK-1 mimetic peptide (mp-HNK-1) and systemic treatment with ursolic acid (UA), another HNK-1 mimetic, after ventral root avulsion and reimplantation with heterologous fibrin biopolymer (HFB). Methods: Female mice of the isogenic strain C57BL/6JUnib were divided into five experimental groups: Avulsion, Reimplantation, mp-HNK-1 (in situ), and UA (systemic treatment). Mice were evaluated 2 and 12 weeks after surgery. Functional assessment was performed every four days using the Catwalk platform. Neuronal survival was analyzed by cytochemistry, and glial reactions and synaptic coverage were evaluated by immunofluorescence. Results: Treatment with UA elicited long-term neuroprotection, accompanied by a decrease in microglial reactions, and reactive astrogliosis. The neuroprotective effects of UA were preceded by increased glutamatergic and GABAergic inputs in the ventral spinal cord two weeks after injury. However, a single application of mp-HNK-1 had no significant effects. Functional analysis showed that UA treatment led to an improvement in motor and sensory recovery. Conclusion: Overall, the results indicate that UA is neuroprotective, acting on glial cells and synaptic maintenance, and the combination of these findings led to a better functional recovery.
RESUMEN
Epilepsy is one of the most common chronical neurological conditions affecting over 50 million people worldwide. In addition to the stigma and discrimination, individuals with epilepsy suffer from a nearly three-fold increased risk of premature death compared to the general population. Although these premature deaths occur due to multiple causes, sudden unexpected death in epilepsy (SUDEP) still challenges neurologists and clinicians dealing with individuals with epilepsy. Recently, an increased interest in cardiac outcomes related to acute seizures and chronic epilepsy resulted in the groundbreaking development of the "epileptic heart" concept, and sudden cardiac death in individuals with epilepsy, which is 4.5 times as frequent as SUDEP according to some observational data, has gained more attention. As we gather information and learn about possible comorbidities and consequences of seizures and/or chronic epilepsy, we present a clinical case of a young patient with an unusual association of epilepsy, the Gorlin Goltz syndrome, and a cardiac fibroma with Wolf-Parkinson-White (WPW), who had multiple aborted cardiac arrests. Diagnostic challenges and multiple possible causes of sudden cardiac death in this single patient report are discussed.
RESUMEN
Vector control is one of the principal strategies used for reducing malaria transmission. Long-lasting insecticidal bed nets (LLINs) are a key tool used to protect populations at risk of malaria, since they provide both physical and chemical barriers to prevent human-vector contact. This study aimed to assess the physical durability and insecticidal efficacy of LLINs distributed in Cruzeiro do Sul (CZS), Brazil, after 4 years of use. A total of 3000 LLINs (PermaNet 2.0) were distributed in high malaria risk areas of CZS in 2007. After 4 years of use, 27 'rectangular' LLINs and 28 'conical' LLINs were randomly selected for analysis. The evaluation of physical integrity was based on counting the number of holes and measuring their size and location on the nets. Insecticidal efficacy was evaluated by cone bioassays, and the amount of residual insecticide remaining on the surface of the LLINs was estimated using a colorimetric method. After 4 years of use, physical damage was highly prevalent on the rectangular LLINs, with a total of 473 holes detected across the 27 nets. The upper portion of the side panels sustained the greatest damage in rectangular LLINs. The overall mosquito mortality by cone bioassay was < 80% in 25/27 rectangular LLINs, with panel A (at the end of the rectangular bednet) presenting the highest mortality (54%). The overall mean insecticide concentration was 0.5 µg/sample, with the bednet roof containing the highest average concentration (0.61 µg/sample). On the conical LLINs, 547 holes were detected, with the bottom areas sustaining the greatest damage. The cone bioassay mortality was < 80% in 26/28 of the conical LLINs. The mean insecticide concentration was 0.3 µg/sample. After 4 years of use, the insecticidal efficacy of the LLINs was diminished to below acceptable thresholds.
Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Humanos , Insecticidas/farmacología , Brasil , Control de Mosquitos/métodos , Mosquitos Vectores , Malaria/prevención & controlRESUMEN
BACKGROUND: Osteoarthritis (OA) is a chronic disease that may lead to joint structure degeneration, cartilage destruction, osteophyte formation, subchondral bone disruption, and pain. In this scenario, a higher proportion of the proinflammatory macrophage type 1 (M1) than the anti-inflammatory macrophage type 2 (M2) could be highlighted as a hallmark of OA progression. The balance between these two macrophage types emerges as a new therapeutic target in OA. This study aimed to evaluate the analgesia and macrophage profile in the treatment of experimental osteoarthritis (EOA) with systemic dimethyl fumarate (DMF) or local intra-articular monomethyl fumarate (MMF). RESULTS: DMF via gavage or MMF via intra-articular in the right knee of EOA rats showed improvements in gait parameters and the nociceptive recovery of the mechanical threshold assessment by adapted electronic von Frey treatment on the twenty-first day (long-lasting phase). DMF treatment decreased proinflammatory TNF-α while increasing anti-inflammatory IL-10 cytokines from the macerated capsule on the fifth day (inflammatory phase). MMF treatment showed joint capsule mRNA extraction downregulating iNOS and TNF-α gene expression while upregulating IL-10 and MCP-1. However, CD206 was not significant but higher than untreated EOA rats' joints on the seventh day (inflammatory phase). CONCLUSIONS: Our studies with EOA model induced by MIA suggest a new perspective for human treatment committed with OA based on macrophage polarization as a therapeutic target, switching the proinflammatory profile M1 to the anti-inflammatory profile M2 with DMF systematic or by MMF locally treatment according to the OA severity.
Asunto(s)
Fumaratos , Interleucina-10 , Osteoartritis , Humanos , Ratas , Animales , Factor de Necrosis Tumoral alfa , Osteoartritis/metabolismo , Dolor/tratamiento farmacológico , Dimetilfumarato , Macrófagos/metabolismo , Antiinflamatorios/uso terapéuticoRESUMEN
Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.
Asunto(s)
Micorrizas , Árboles , Ecosistema , Suelo , NutrientesRESUMEN
Magnetars are highly magnetized neutron stars, the formation mechanism of which is unknown. Hot helium-rich stars with spectra dominated by emission lines are known as Wolf-Rayet stars. We observed the binary system HD 45166 using spectropolarimetry and reanalyzed its orbit using archival data. We found that the system contains a Wolf-Rayet star with a mass of 2 solar masses and a magnetic field of 43 kilogauss. Stellar evolution calculations indicate that this component will explode as a supernova, and that its magnetic field is strong enough for the supernova to leave a magnetar remnant. We propose that the magnetized Wolf-Rayet star formed by the merger of two lower-mass helium stars.
RESUMEN
Spinal cord injury causes critical loss in motor and sensory function. Ventral root avulsion is an experimental model in which there is the tearing of the ventral (motor) roots from the surface of the spinal cord, resulting in several morphological changes, including motoneuron degeneration and local spinal cord circuitry rearrangements. Therefore, our goal was to test the combination of surgical repair of lesioned roots with a fibrin biopolymer and the pharmacological treatment with dimethyl fumarate, an immunomodulatory drug. Thus, adult female Lewis rats were subjected to unilateral ventral root avulsion of L4-L6 roots followed by repair with fibrin biopolymer and daily treatment with dimethyl fumarate (15 mg/Kg; gavage) for 4 weeks, the survival time post-surgery being 12 weeks; n = 5/group/technique. Treatments were evaluated by immunofluorescence and transmission electron microscopy, morphometry of the sciatic nerve, and motor function recovery. Our results indicate that the combination between fibrin biopolymer and dimethyl fumarate is neuroprotective since most of the synapses apposed to alfa motoneurons were preserved in clusters. Also, nerve sprouting occurred, and the restoration of the 'g' ratio and large axon diameter was achieved with the combined treatment. Such parameters were combined with up to 50% of gait recovery, observed by the walking track test. Altogether, our results indicate that combining root restoration with fibrin biopolymer and dimethyl fumarate administration can enhance motoneuron survival and regeneration after proximal lesions.
RESUMEN
Epidemiological data regarding the incidence of secondary multidrug-resistant (MDR) Gram-negative infection in patients with coronavirus disease (COVID-19) in Brazil are still ambiguous. Thus, a case-control study was designed to determine factors associated with the acquisition of MDR Gram-negative bacteria (GNB) in patients with and without COVID-19 and describe the mortality rates and clinical features associated with unfavorable outcomes. In total, we assessed 280 patients admitted to Brazilian intensive care units from March/2020 to December/2021. During the study, 926 GNB were isolated. Out of those, 504 were MDR-GNB, representing 54.4% of the resistance rate. In addition, out of 871 patients positive for COVID-19, 73 had secondary MDR-GNB infection, which represented 8.38% of documented community-acquired GNB-MDR infections. The factors associated with patients COVID-19-MDR-GNB infections were obesity, heart failure, use of mechanical ventilation, urinary catheter, and previous use of ß-lactams. Several factors associated with mortality were identified among patients with COVID-19 infected with MDR-GNB, including the use of a urinary catheter; renal failure; and the origin of bacterial cultures such as tracheal secretion, exposure to carbapenem antibiotics, and polymyxin. Mortality was significantly higher in patients with COVID-19-MDR-GNB (68.6%) compared to control groups, where COVID-19 was 35.7%, MDR-GNB was 50%, and GNB was 21.4%. Our findings demonstrate that MDR-GNB infection associated with COVID-19 has an expressive impact on increasing the case fatality rate, reinforcing the importance of minimizing the use of invasive devices and prior exposure to antimicrobials to control the bacterial spread in healthcare environments to improve the prognosis among critical patients.
Asunto(s)
COVID-19 , Infecciones por Bacterias Gramnegativas , Humanos , Bacterias Gramnegativas , Estudios de Casos y Controles , Factores de Riesgo , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéuticoRESUMEN
The spread of polymyxin-resistant Klebsiella pneumoniae strains represents an emerging health challenge, limiting treatment options for the patients. Thus, the development of new antimicrobials is an urgent requirement. Antimicrobial peptides (AMPs) are a large class of compounds that are part of innate immune response; these peptides are promising compounds in the field of antimicrobial resistance and are present in all organisms. The present review evaluated patents on antimicrobial peptides tested against polymyxin-resistant K. pneumoniae, available on Espacenet as of September 2022. A total of 1313 patents were examined and 1197 excluded as they were out of focus for this review; 104 patents of peptides tested against K. pneumoniae were included; of which only 14 were tested against polymyxin-resistant K. pneumoniae strains. The results indicated that all AMPs evaluated were in the experimental or pre-clinical phase; the clinical phase is pending. Furthermore, a few peptides were tested effectively against polymyxin-resistant K. pneumoniae. Although, the research and patent filing alone are not enough to develop a suitable antimicrobial therapy, they can represent good starting point upon which to develop new antimicrobials. More investment is required to push these pharmaceuticals through the stages of development to introduce them into the market.
Asunto(s)
Péptidos Antimicrobianos , Polimixinas , Humanos , Klebsiella pneumoniae , Polimixinas/farmacología , Farmacorresistencia BacterianaRESUMEN
It is widely known that the aging process induces relevant impairments on both muscle morphology and function. In this sense, resistance training alongside proper protein intake are important strategies to mitigate the sarcopenia process in older individuals. However, adding protein supplementation (PS) to resistance training interventions for enhancing muscle strength and functional performance has shown mixed results in this population. Therefore, the present study aimed to review the most recent evidence regarding PS and its effects on muscle strength and functional parameters of older adults. In addition, the effect size of each individual study (post-pre intervention) was also calculated to provide further clinical relevance on the topic. The results of the studies included do not seem to support PS for healthy older adults with proper protein intake. However, further studies with other sample characteristics (very old, frail, obese, and inadequate protein consumption) must be carried out to better understand the effects of PS in an older population.
Asunto(s)
Entrenamiento de Fuerza , Sarcopenia , Anciano , Humanos , Suplementos Dietéticos , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Obesidad , Rendimiento Físico Funcional , Sarcopenia/prevención & controlRESUMEN
Simultaneous localization and mapping (SLAM) refers to techniques for autonomously constructing a map of an unknown environment while, at the same time, locating the robot in this map. RatSLAM, a prevalent method, is based on the navigation system found in rodent brains. It has served as a base algorithm for other bioinspired approaches, and its implementation has been extended to incorporate new features. This work proposes xRatSLAM: an extensible, parallel, open-source framework applicable for developing and testing new RatSLAM variations. Tests were carried out to evaluate and validate the proposed framework, allowing the comparison of xRatSLAM with OpenRatSLAM and assessing the impact of replacing framework components. The results provide evidence that the maps produced by xRatSLAM are similar to those produced by OpenRatSLAM when they are fed with the same input parameters, which is a positive result, and that implemented modules can be easily changed without impacting other parts of the framework.
Asunto(s)
Robótica , Robótica/métodos , Algoritmos , EncéfaloRESUMEN
Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1ß. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1ß levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.
Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Terapia por Luz de Baja Intensidad , Animales , Calcio/metabolismo , Calcio de la Dieta/metabolismo , Diabetes Mellitus/metabolismo , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/radioterapia , Ganglios Espinales/metabolismo , Hiperalgesia , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Estreptozocina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: Resistance to anti-malarial drugs is associated with polymorphisms in target genes and surveillance for these molecular markers is important to detect the emergence of mutations associated with drug resistance and signal recovering sensitivity to anti-malarials previously used. METHODS: The presence of polymorphisms in genes associated with Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated by Sanger sequencing, in 85 P. falciparum day of enrollment samples from a therapeutic efficacy study of artemether-lumefantrine conducted in 2018-2019 in Quibdo, Colombia. Samples were genotyped to assess mutations in pfcrt (codons 72-76), pfdhfr (codons 51, 59, 108, and 164), and pfdhps genes (codons 436, 437, 540, and 581). Further, the genetic diversity of infections using seven neutral microsatellites (NMSs) (C2M34, C3M69, Poly α, TA1, TA109, 2490, and PfPK2) was assessed. RESULTS: All isolates carried mutant alleles for pfcrt (K76T and N75E), and for pfdhfr (N51I and S108N), while for pfdhps, mutations were observed only for codon A437G (32/73, 43.8%). Fifty samples (58.8%) showed a complete neutral microsatellites (NMS) profile. The low mean number of alleles (2 ± 0.57) per locus and mean expected heterozygosity (0.17 ± 0.03) showed a reduced genetic diversity. NMS multilocus genotypes (MMG) were built and nine MMG were identified. CONCLUSIONS: Overall, these findings confirm the fixation of chloroquine and pyrimethamine-resistant alleles already described in the literature, implying that these drugs are not currently appropriate for use in Colombia. In contrast, mutations in the pfdhps gene were only observed at codon 437, an indication that full resistance to sulfadoxine has not been achieved in Choco. MMGs found matched the clonal lineage E variant 1 previously reported in northwestern Colombia.
Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Cloroquina/farmacología , Cloroquina/uso terapéutico , Colombia , Malaria Falciparum/epidemiología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Polimorfismo Genético , CodónRESUMEN
Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB. Pharmacological treatments were initiated with the beginning of clinical signs, and all animals were euthanized at 28 dpi for the lumbar spinal cord evaluation. The results demonstrated a stronger attenuation of the clinical presentation by the combined approach. DMF alone promoted the downregulation of Iba-1 (microglia/macrophages marker) in the ventral horn compared with the non-treated EAE animals (P < 0.05). PGB treatment was associated with reduced Iba-1 immunofluorescence in both the dorsal (P < 0.05) and ventral horn (P < 0.05) compared to EAE vehicle-treated counterparts. However, the combined approach reduced the Iba-1 marker in the dorsal (P < 0.05) and ventral (P < 0.01) horns compared to non-treated EAE animals and further reduced Iba-1 in the ventral horn compared to each drug-alone approach (P < 0.05). In addition, the combination of DMF and PGB reduced activated astrocytes (GFAP) in both the dorsal and ventral horns of the spinal cord to a naïve-like level and upregulated Nrf-2 expression. Taken together, the data herein suggest robust attenuation of the glial response in EAE mice treated with DMF and PGB.
RESUMEN
Three-dimensional cellular aggregates can mimic the natural microenvironment of tissues and organs and obtaining them through controlled and reproducible processes is mandatory for scaling up and implementing drug cytotoxicity and efficacy tests, as well as tissue engineering protocols. The purpose of this work was to develop and evaluate the performance of a device with two different geometries fabricated by additive manufacturing. The methodology was based on casting a microwell array insert using a non-adhesive hydrogel to obtain highly regular microcavities to standardize spheroid formation and morphology. Spheroids of dental pulp stem cells, bone marrow stromal cells and embryonic stem cells showing high cell viability and average diameters of around 253, 220, and 500 µm, respectively, were produced using the device with the geometry considered most adequate. The cell aggregates showed sphericity indexes above 0.9 and regular surfaces (solidity index higher than 0.96). Around 1000 spheroids could be produced in a standard six-well plate. Overall, these results show that this method facilitates obtaining a large number of uniform, viable spheroids with pre-specified average diameters and through a low-cost and reproducible process for a myriad of applications.