Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
FEMS Microbiol Ecol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650068

RESUMEN

The Melipona gut microbes differ from other social bees, with the absence of crucial corbiculate core gut symbionts and the high occurrence of environmental strains. We studied the microbial diversity and composition of three Melipona species and their honey to understand which strains are obtained by horizontal transmission (HT) from the pollination environment; or represent symbionts co-evolved with Melipona by HT from the hive/food stores or vertical transmission (VT) via social interactions. Bees harbored higher microbial alpha diversity and a different and more species-specific bacterial composition than honey. Otherwise, the fungal communities of bee and honey samples are less dissimilar. As expected, the core symbionts Snodgrassella and Gilliamella were absent in bees that had a prevalence of Lactobacillus Firm-5, environmental Lactobacillaceae, Bifidobacteriaceae and Acetobacteraceae. Also, Pectinatus and Floricoccus have habitat preferences for bees, putatively representing novel symbionts from the environment that co-evolved via VT among generations. Fructilactobacillus found in bees possibly had HT to bees from honey stores. Metschnikowia yeasts, consistent in all bees and honey samples, might have HT to bees from food stores. Similarly, Saccharomycetales might have HT from honey or plants/flowers to bees. This work contributes to the understanding of Melipona symbionts and their modes of transmission.

2.
J Environ Manage ; 356: 120559, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471324

RESUMEN

In November 2015, a catastrophic rupture of the Fundão dam in Mariana (Brazil), resulted in extensive socio-economic and environmental repercussions that persist to this day. In response, several reforestation programs were initiated to remediate the impacted regions. However, accurately assessing soil health in these areas is a complex endeavor. This study employs machine learning techniques to predict soil quality indicators that effectively differentiate between the stages of recovery in these areas. For this, a comprehensive set of soil parameters, encompassing 3 biological, 16 chemical, and 3 physical parameters, were evaluated for samples exposed to mining tailings and those unaffected, totaling 81 and 6 samples, respectively, which were evaluated over 2 years. The most robust model was the decision tree with a restriction of fewer levels to simplify the tree structure. In this model, Cation Exchange Capacity (CEC), Microbial Biomass Carbon (MBC), Base Saturation (BS), and Effective Cation Exchange Capacity (eCEC) emerged as the most pivotal factors influencing model fitting. This model achieved an accuracy score of 92% during training and 93% during testing for determining stages of recovery. The model developed in this study has the potential to revolutionize the monitoring efforts conducted by regulatory agencies in these regions. By reducing the number of parameters that necessitate evaluation, this enhanced efficiency promises to expedite recovery monitoring, simultaneously enhancing cost-effectiveness while upholding the analytical rigor of assessments.


Asunto(s)
Ecosistema , Compuestos de Hierro , Suelo/química , Monitoreo del Ambiente , Minería , Brasil , Hierro/análisis , Cationes , Ríos/química
3.
Appl Microbiol Biotechnol ; 107(23): 7231-7250, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741937

RESUMEN

Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.


Asunto(s)
Bacteriófagos , Fagos de Staphylococcus , Animales , Bovinos , Femenino , Humanos , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Proteómica , Genoma Viral , Genómica , Bacteriófagos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN de Transferencia
4.
Microorganisms ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37763984

RESUMEN

Proteus mirabilis is an opportunistic pathogen and is responsible for more than 40% of all cases of catheter-associated urinary tract infections (CAUTIs). Healthcare-associated infections have been aggravated by the constant emergence of antibiotic-resistant bacterial strains. Because of this, the use of phages to combat bacterial infections gained renewed interest. In this study, we describe the biological and genomic features of two P. mirabilis phages, named BigMira and MidiMira. These phages belong to the Acadevirus genus (family Autographiviridae). BigMira and MidiMira are highly similar, differing only in four missense mutations in their phage tail fiber. These mutations are sufficient to impact the phages' depolymerase activity. Subsequently, the comparative genomic analysis of ten clinical P. mirabilis strains revealed differences in their antibiotic resistance profiles and lipopolysaccharide locus, with the latter potentially explaining the host range data of the phages. The massive presence of antimicrobial resistance genes, especially in the phages' isolation strain P. mirabilis MCS, highlights the challenges in treating infections caused by multidrug-resistant bacteria. The findings reinforce BigMira and MidiMira phages as candidates for phage therapy purposes.

5.
Antiviral Res ; 212: 105578, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934985

RESUMEN

The Zika virus (ZIKV) is an arbovirus and belongs to the Flaviviridae family and Flavivirus genus, with dissemination in the Americas. In Brazil, the predominant strain is the Asian, promoting outbreaks that started in 2015 and are directly related to microcephaly in newborns and Guillain-Barré syndrome in adults. Recently, researchers identified a new African strain circulating in Brazil at the mid-end of 2018 and the beginning of 2019, with the potential to originate a new epidemic. To date, there is no approved vaccine or drug for the treatment of Zika syndrome, and the development of therapeutic alternatives to treat it is of relevance. A critical approach is to use natural products when searching for new chemical agents to treat Zika syndrome. The present investigation describes the preparation of a series of 1,2,3-triazoles derived from the natural product vanillin and the evaluation of their virucide activity. A series of fourteen derivatives were prepared via alkylation of vanillin followed by CuAAC (the copper(I)-catalyzed azide-alkyne cycloaddition) reaction. The compounds were fully characterized by infrared (I.R.), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS) techniques. The cytotoxicity of Vero cells and the effect on the Zika Virus of the vanillin derivatives were evaluated. It was found that the most effective compound corresponded to 4-((1-(4-isopropylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxybenzaldehyde (8) (EC50 = 27.14 µM, IC50 = 334.9 µM). Subsequent assessments, namely pre and post-treatment assays, internalization and adsorption inhibition assays, kinetic, electronic microscopy analyses, and zeta potential determination, revealed that compound 8 blocks the Zika virus infection in vitro by acting on the viral particle. A molecular docking study was performed, and the results are also discussed.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Chlorocebus aethiops , Adulto , Recién Nacido , Humanos , Infección por el Virus Zika/prevención & control , Células Vero , Simulación del Acoplamiento Molecular , Replicación Viral
6.
Nutrients ; 14(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432591

RESUMEN

(1) Background: Exhaustive exercise can induce muscle damage. The consumption of nutritional compounds with the ability to positively influence the oxidative balance and an exacerbated inflammatory process has been previously studied. However, little is known about the nutritional value of curcumin (CCM) when mixed with whey protein concentrate (WPC). This study was developed to evaluate the effect of CCM-added WPC on inflammatory and oxidative process control and histopathological consequences in muscle tissue submitted to an exhaustive swimming test (ET). (2) Methods: 48 animals were randomly allocated to six groups (n = 8). An ET was performed 4 weeks after the start of the diet and animals were euthanized 24 h post ET. (3) Results: WPC + CCM and CCM groups reduced IL-6 and increased IL-10 expression in muscle tissue. CCM reduced carbonyl protein after ET compared to standard AIN-93M ET and WPC + CCM ET diets. Higher nitric oxide concentrations were observed in animals that consumed WPC + CCM and CCM. Consumption of WPC + CCM or isolated CCM reduced areas of inflammatory infiltrate and fibrotic tissue in the muscle. (4) Conclusions: WPC + CCM and isolated CCM contribute to the reduction in inflammation and oxidative damage caused by the exhaustive swimming test.


Asunto(s)
Curcumina , Animales , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/metabolismo , Curcumina/farmacología , Curcumina/metabolismo , Estrés Oxidativo , Músculo Esquelético/metabolismo , Inflamación/metabolismo
7.
Food Res Int ; 158: 111379, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35840186

RESUMEN

The use of probiotic and synbiotic is a promising strategy to modulate the intestinal microbiota, and thereby modify the risk of diseases. In this study, the effect of probiotic VSL#3, isolated or associated with a yacon-based product (PBY), on the functional metabolic pathways of the microbiota, in a colorectal carcinogenesis model, was evaluated. For this, mice induced to carcinogenesis were fed with standard diet AIN-93 M (CON), diet AIN-93 M and VSL#3 (PRO) or diet AIN-93 M with yacon and VSL#3 (SYN). The SYN group showed a highly differentiated intestinal community based on the MetaCyc pathways. Of the 351 predicted functional pathways, 222 differed between groups. Most of them were enriched in the SYN group, namely: amino acid biosynthesis pathways, small molecule biosynthesis pathways (cofactors, prosthetic groups, electron carriers and vitamins) carbohydrate degradation pathways and fermentation pathways. In addition, the synbiotic was able to stimulate the anti-inflammatory immune response and reduce the gene expression of PCNA and c-myc. Thus, we conclude that the synbiotic impacted more significantly the metabolic functions of the microbiota compared to the isolated use of probiotic. We believe that the enrichment of these pathways can exert antiproliferative action, reducing colorectal carcinogenesis. The prediction of the functional activity of the microbiota is a promising tool for understanding the influence of the microbiome on tumor development.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Antígeno Nuclear de Célula en Proliferación , Simbióticos , 1,2-Dimetilhidrazina/farmacología , Animales , Carcinogénesis , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/prevención & control , Redes y Vías Metabólicas , Ratones , Antígeno Nuclear de Célula en Proliferación/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-myc/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo
8.
Viruses ; 14(5)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35632709

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain-Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Artralgia/virología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/patología , Fiebre Chikungunya/prevención & control , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Humanos , Desarrollo de Vacunas , Vacunas Virales
9.
PLoS One ; 17(4): e0267471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35452494

RESUMEN

The development of new drugs is a very complex and time-consuming process, and for this reason, researchers have been resorting heavily to drug repurposing techniques as an alternative for the treatment of various diseases. This approach is especially interesting when it comes to emerging diseases with high rates of infection, because the lack of a quickly cure brings many human losses until the mitigation of the epidemic, as is the case of COVID-19. In this work, we combine an in-house developed machine learning strategy with docking, MM-PBSA calculations, and metadynamics to detect potential inhibitors for SARS-COV-2 main protease among FDA approved compounds. To assess the ability of our machine learning strategy to retrieve potential compounds we calculated the Enrichment Factor of compound datasets for three well known protein targets: HIV-1 reverse transcriptase (PDB 4B3P), 5-HT2A serotonin receptor (PDB 6A94), and H1 histamine receptor (PDB 3RZE). The Enrichment Factor for each target was, respectively, 102.5, 12.4, 10.6, which are considered significant values. Regarding the identification of molecules that can potentially inhibit the main protease of SARS-COV-2, compounds output by the machine learning step went through a docking experiment against SARS-COV-2 Mpro. The best scored poses were the input for MM-PBSA calculations and metadynamics using CHARMM and AMBER force fields to predict the binding energy for each complex. Our work points out six molecules, highlighting the strong interaction obtained for Mpro-mirabegron complex. Among these six, to the best of our knowledge, ambenonium has not yet been described in the literature as a candidate inhibitor for the SARS-COV-2 main protease in its active pocket.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química
10.
Microorganisms ; 8(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327620

RESUMEN

We evaluated the effects of the probiotic candidate Lactobacillus paracasei DTA81 (DTA81) on liver oxidative stress, colonic cytokine profile, and gut microbiota in mice with induced early colon carcinogenesis (CRC) by 1,2-dimethylhydrazine (DMH). Animals were divided into four different groups (n = 6) and received the following treatments via orogastric gavage for 8 weeks: Group skim milk (GSM): 300 mg/freeze-dried skim milk/day; Group L. paracasei DTA81 (DTA81): 3 × 109 colony-forming units (CFU)/day; Group Lactobacillus rhamnosus GG (LGG): 3 × 109 CFU/day; Group non-intervention (GNI): 0.1 mL/water/day. A single DMH dose (20 mg/kg body weight) was injected intraperitoneally (i.p), weekly, in all animals (seven applications in total). At the end of the experimental period, DTA81 intake reduced hepatic levels of carbonyl protein and malondialdehyde (MDA). Moreover, low levels of the pro-inflammatory cytokines Interleukin-6 (IL-6) and IL-17, as well as a reduced expression level of the proliferating cell nuclear antigen (PCNA) were observed in colonic homogenates. Lastly, animals who received DTA81 showed an intestinal enrichment of the genus Ruminiclostridium and increased concentrations of caecal acetic acid and total short-chain fatty acids. In conclusion, this study indicates that the administration of the probiotic candidate DTA81 can have beneficial effects on the initial stages of CRC development.

11.
FEMS Microbiol Lett ; 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33270833

RESUMEN

The teaching-learning process becomes more attractive when practical classes are used as part of methodological tools. Aiming (i) to stimulate the interest of high school students in the microbiological world and (ii) to provide didactic experience for microbiology graduate students, practical classes were undertaken. These classes were carried out during the years 2016 and 2017, using the infrastructure held at Universidade Federal de Viçosa. Briefly, laboratory classes were prepared and taught by microbiology graduate students and an evaluation questionnaire was answered by the participants after the classes. Approximately 95% of the high school students, from both years, evaluated the experience outside of the school routine as very good and good. A total of 90.09% (2016) and 100% (2017) of graduate students evaluated this experience as very good and good. The relationship between high school and graduate students also increased the curiosity of the former regarding the university environment. Accordingly, the information retention regarding the 'microbiology world' was verified after one year and the students were able to remember important terms related to the microbiology class. In addition, this work allowed graduate students and high school students to build a closer relationship and created an excellent teaching-learning strategy for both.

12.
Front Plant Sci ; 11: 581100, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193526

RESUMEN

Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 µg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.

13.
Appl Microbiol Biotechnol ; 104(20): 8837-8857, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32902682

RESUMEN

Colorectal cancer is a public health problem, with dysbiosis being one of the risk factors due to its role in intestinal inflammation. Probiotics and synbiotics have been used in order to restore the microbiota balance and to prevent colorectal carcinogenesis. We aimed to investigate the effects of the probiotic VSL#3® alone or in combination with a yacon-based prebiotic concentrate on the microbiota modulation and its influence on colorectal carcinogenesis in an animal model. C57BL/6J mice were divided into three groups: control (control diet), probiotic (control diet + VSL#3®), and synbiotic (yacon diet + VSL#3®). The diets were provided for 13 weeks and, from the third one, all animals were subjected to induction of colorectal cancer precursor lesions. Stool samples were collected to evaluate organic acids, feces pH, ß-glucuronidase activity, and microbiota composition. The colon was used to count pre-neoplastic lesions and to determine the cytokines. The microbiota composition was influenced by the use of probiotic and synbiotic. Modifications were also observed in the abundance of bacterial genera with respect to the control group, which confirms the interference of carcinogenesis in the microbiota. Pre-neoplastic lesions were reduced by the use of the synbiotic, but not with the probiotic. The protection provided by the synbiotic can be attributed to the modulation of the intestinal inflammatory response, to the inhibition of a pro-carcinogenic enzyme, and to the production of organic acids. The modulation of the composition and activity of the microbiota contributed to beneficial changes in the intestinal microenvironment, which led to a reduction in carcinogenesis. KEY POINTS: • Synbiotic reduces the incidence of colorectal cancer precursor lesions. • Synbiotic modulates the composition and activity of intestinal microbiota. • Synbiotic increases the abundance of butyrate-producing bacteria.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Probióticos , Simbióticos , Animales , Carcinogénesis , Neoplasias Colorrectales/prevención & control , Ratones , Ratones Endogámicos C57BL , Microambiente Tumoral
14.
Sci Rep ; 10(1): 5520, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218514

RESUMEN

Brazil has the second-largest dairy cattle herd in the world, and bovine mastitis still can cause significant losses for dairy farmers. Despite this fact, little information is available about milk microbial composition of Brazilian dairy cows, as well as the potential use of bacteriophages in the control of S. aureus. Here, we investigated milk bacterial composition of 28 Holstein Fresian cows (109 teats), selected in the dry-off period, using 16S rRNA analysis. Furthermore, a representative S. aureus strain (UFV2030RH1) was obtained at drying-off for isolation of a bacteriophage (vB_SauM-UFV_DC4, UFV_DC4) and bacterial genomic comparison purposes. Our outcomes revealed that Staphylococcus was the third most prevalent genus and positively correlated with subclinical mastitis events. As a major finding, genomic analyses showed the presence of adhesive matrix molecules that recognize microbial surface components (MSCRAMM) in UFV2030RH1 and might indicate great biofilm formation capability. A minimum inhibitory concentration (MIC) assay showed that resistance to ampicillin was the highest among the antibiotic tested in S. aureus 3059 and UFV2030RH1, displaying values four and sixteen times greater than MIC resistance breakpoint, respectively. Together, our results suggest that Staphylococcus is highly prevalent in dairy cows at drying-off and the use of the phage UFV_DC4 as a biocontrol agent must be investigated in future studies.


Asunto(s)
Mastitis Bovina/microbiología , Leche/microbiología , ARN Ribosómico 16S/genética , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/clasificación , Resistencia a la Ampicilina , Animales , Antibacterianos/farmacología , Bovinos , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Genómica , Mastitis Bovina/prevención & control , Filogenia , Análisis de Secuencia de ADN , Fagos de Staphylococcus/aislamiento & purificación , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/virología
15.
Sci Rep ; 10(1): 2215, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042029

RESUMEN

Biological ammonium removal via heterotrophic nitrification/aerobic denitrification (HN/AD) presents several advantages in relation to conventional removal processes, but little is known about the microorganisms and metabolic pathways involved in this process. In this study, Pseudomonas stutzeri UFV5 was isolated from an activated sludge sample from oil wastewater treatment station and its ammonium removal via HN/AD was investigated by physicochemical and molecular approaches to better understand this process and optimize the biological ammonium removal in wastewater treatment plants. Results showed that P. stutzeri UFV5 removed all the ammonium in 48-72 hours using pyruvate, acetate, citrate or sodium succinate as carbon sources, C/N ratios 6, 8, 10 and 12, 3-6% salinities, pH 7-9 and temperatures of 20-40 °C. Comparative genomics and PCR revealed that genes encoding the enzymes involved in anaerobic denitrification process are present in P. stutzeri genome, but no gene that encodes enzymes involved in autotrophic nitrification was found. Furthermore, transcriptomics showed that none of the known enzymes of autotrophic nitrification and anaerobic denitrification had their expression differentiated and an upregulation of the biosynthesis machinery and protein translation was observed, besides several genes with unknown function, indicating a non-conventional mechanism involved in HN/AD process.


Asunto(s)
Compuestos de Amonio/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas stutzeri/metabolismo , Transcriptoma/fisiología , Aguas Residuales/química , Aerobiosis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Desnitrificación/fisiología , Procesos Heterotróficos/fisiología , Nitrificación/fisiología , Pseudomonas stutzeri/química , Pseudomonas stutzeri/genética , Aguas del Alcantarillado/microbiología
16.
J Environ Manage ; 248: 109273, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31336338

RESUMEN

Two sequential batch reactors were operated, aiming at forming aerobic granular sludge and studying the effects of the gradual increase of the NaCl concentration on the granule. structure and microbial diversity, and on the efficiency of ammonia removal. The reactors were fed with ammonia-enriched synthetic effluent and 5 g L-1 of NaCl per week were applied. A decrease in the size of the granules was observed until they were completely disintegrated as the salt concentration increased up to 10 g L-1. However, the ammonia removal efficiency remained high in all the salinities applied. By sequencing the 16S rRNA amplicon gene, the microbial community structure allowed the verification of the presence of several genera affiliated with the bacteria that perform both heterotrophic nitrification and aerobic denitrification, besides those involved in the conventional nitrification and denitrification and the ANAMMOX process. Salinity affected the microbial population related to the formation and stability of the granules.


Asunto(s)
Amoníaco , Aguas del Alcantarillado , Reactores Biológicos , Nitrificación , ARN Ribosómico 16S , Cloruro de Sodio
17.
PLoS Negl Trop Dis ; 13(5): e0007375, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050676

RESUMEN

BACKGROUND: The Mayaro virus (MAYV) is an endemic arbovirus in South American countries, where it is responsible for sporadic outbreaks of Mayaro fever. Clinical manifestations include fever, headache, ocular pain, rash, myalgia, and debilitating and persistent polyarthralgia. Understanding the mechanisms associated with MAYV-induced arthritis is of great importance due to the potential for its emergence, urbanization and dispersion to other regions. METHODS: 15-day old Balb/c mice were infected by two distinct pathways, below the forelimb and in the rear footpad. Animals were observed for a period of 21 days. During this time, they were monitored every 24 hours for disease signs, such as weight loss and muscle weakness. Histological damage in the muscles and joints was evaluated 3, 7, 10, 15 and 20 days post-infection. The cytokine profile in serum and muscles during MAYV infection was evaluated by flow cytometry at different post-infection times. For pain analysis, the animals were submitted to the von Frey test and titre in different organs was evaluated throughout the study to obtain viral kinetics. FINDINGS: Infection by two distinct pathways, below the forelimb and in the rear footpad, resulted in a homogeneous viral spread and the development of acute disease in animals. Clinical signs were observed such as ruffled fur, hunched posture, eye irritation and slight gait alteration. In the physical test, both groups presented loss of resistance, which was associated with histopathological damage, including myositis, arthritis, tenosynovitis and periostitis. The immune response was characterized by a strong inflammatory response mediated by the cytokines TNF-α, IL-6 and INF-γ and chemokine MCP-1, followed by the action of IL-10 and IL-4 cytokines. INTERPRETATION: The results showed that Balb/c mice represent a promising model to study mechanisms involved in MAYV pathogenesis and for future antiviral testing.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus/fisiología , Artritis/virología , Modelos Animales de Enfermedad , Miositis/virología , Animales , Arbovirus/genética , Arbovirus/aislamiento & purificación , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratones Endogámicos BALB C , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
18.
Gene ; 703: 50-57, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30965126

RESUMEN

Desulfovibrio alaskensis is a Gram-negative bacterial species that belongs to the group of Sulphate Reducing Bacteria (SRB) and presents prophages in genomes, a common characteristic of the genus Desulfovibrio. Genetic material can be transported by outer membrane vesicles, however, no data regarding the production of these vesicles has been reported for D. alaskensis. To verify the expression of D. alaskensis prophages and their involvement with outer membrane vesicles, the DSM16109 strain was used. The DSM16109 strain had three prophages and presented reduced growth after mitomycin C addition when compared to the control culture. This reduction was accompanied by the presence of virus-like particles (VLPs), indicating mitomycin C dependent prophage induction. The increase in the number of cap gene copies and transcriptions of the three prophages was verified in the control sample, however, without the formation of VLPs. Prophage genes were identified in outer membrane vesicles from cultures treated and not treated with mitomycin C. DSM16109 prophages are expressed spontaneously but only in the presence of mitomycin C was it possible to observe VLP formation. Due to the genetic material detection from the prophages within outer membrane vesicles, this property may be related to the horizontal transfer of viral genes.


Asunto(s)
Desulfovibrio/virología , Transferencia de Gen Horizontal , Profagos/genética , Vesículas Transportadoras/genética , Desulfovibrio/crecimiento & desarrollo , Mitomicina/farmacología , Transcripción Genética , Proteínas Virales/genética
19.
Sci Rep ; 8(1): 9273, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915307

RESUMEN

Bacteria of the genus Desulfovibrio belong to the group of Sulphate Reducing Bacteria (SRB). SRB generate significant liabilities in the petroleum industry, mainly due to their ability to microbiologically induce corrosion, biofilm formation and H2S production. Bacteriophages are an alternative control method for SRB, whose information for this group of bacteria however, is scarce. The present study developed a workflow for the identification of complete prophages in Desulfovibrio. Poly-lysogenesis was shown to be common in Desulfovibrio. In the 47 genomes analyzed 53 complete prophages were identified. These were classified within the order Caudovirales, with 69.82% belonging to the Myoviridade family. More than half the prophages identified have genes coding for lysozyme or holin. Four of the analyzed bacterial genomes present prophages with identity above 50% in the same strain, whose comparative analysis demonstrated the existence of colinearity between the sequences. Of the 17 closed bacterial genomes analyzed, 6 have the CRISPR-Cas system classified as inactive. The identification of bacterial poly-lysogeny, the proximity between the complete prophages and the possible inactivity of the CRISPR-Cas in closed bacterial genomes analyzed allowed the choice of poly-lysogenic strains with prophages belonging to the Myoviridae family for the isolation of prophages and testing of related strains for subsequent studies.


Asunto(s)
Desulfovibrio/genética , Desulfovibrio/virología , Genoma Bacteriano , Profagos/genética , Sistemas CRISPR-Cas/genética , Filogenia
20.
Sci Rep ; 8(1): 6845, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717158

RESUMEN

Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigella phage Shfl2. After a viral stability evaluation (e.g pH and temperature), intramammary administration (MOI 10) resulted in a 10-fold reduction in bacterial load. Furthermore, pro-inflammatory cytokines, such as IL-6 and TNF-α, were observed after viral treatment. This work brings the whole characterization and immune response to vB_EcoM-UFV13, a biocontrol candidate for bovine mastitis.


Asunto(s)
Bacteriófago T4/genética , Escherichia coli/genética , Escherichia coli/virología , Mastitis Bovina/microbiología , Mastitis Bovina/terapia , Animales , Bovinos , Modelos Animales de Enfermedad , Femenino , Genoma Viral , Interleucina-6/inmunología , Mastitis Bovina/inmunología , Ratones , Ratones Endogámicos BALB C , Filogenia , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA