Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500726

RESUMEN

This study investigates the efficacy of miltefosine, alkylphospholipid, and alkyltriazolederivative compounds against leukemia lineages. The cytotoxic effects and cellular and molecular mechanisms of the compounds were investigated. The inhibitory potential and mechanism of inhibition of cathepsins B and L, molecular docking simulation, molecular dynamics and binding free energy evaluation were performed to determine the interaction of cathepsins and compounds. Among the 21 compounds tested, C9 and C21 mainly showed cytotoxic effects in Jurkat and CCRF-CEM cells, two human acute lymphoblastic leukemia (ALL) lineages. Activation of induced cell death by C9 and C21 with apoptotic and necrosis-like characteristics was observed, including an increase in annexin-V+propidium iodide-, annexin-V+propidium iodide+, cleaved caspase 3 and PARP, cytochrome c release, and nuclear alterations. Bax inhibitor, Z-VAD-FMK, pepstatin, and necrostatin partially reduced cell death, suggesting that involvement of the caspase-dependent and -independent mechanisms is related to cell type. Compounds C9 and C21 inhibited cathepsin L by a noncompetitive mechanism, and cathepsin B by a competitive and noncompetitive mechanism, respectively. Complexes cathepsin-C9 and cathepsin-C21 exhibited significant hydrophobic interactions, water bridges, and hydrogen bonds. In conclusion, alkyltriazoles present cytotoxic activity against acute lymphoblastic lineages and represent a promising scaffold for the development of molecules for this application.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Apoptosis , Propidio/farmacología , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Anexina A5/metabolismo , Línea Celular Tumoral
2.
Biochim Biophys Acta Gen Subj ; 1865(12): 130016, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560176

RESUMEN

BACKGROUND: Garcinia brasiliensis is a species native to the Amazon forest. The white mucilaginous pulp is used in folk medicine as a wound healing agent and for peptic ulcer, urinary, and tumor disease treatments. The activity of the proprotein convertases (PCs) Subtilisin/Kex is associated with the development of viral, bacterial and fungal infections, osteoporosis, hyperglycemia, atherosclerosis, cardiovascular, neurodegenerative and neoplastic diseases. METHODS: Morelloflavone (BF1) and semisynthetic biflavonoid (BF2, 3 and 4) from Garcinia brasiliensis were tested as inhibitor of PCs Kex2, PC1/3 and Furin, and determined IC50, Ki, human proinflammatory cytokines secretion in Caco-2 cells, mechanism of inhibition, and performed molecular docking studies. RESULTS: Biflavonoids were more effective in the inhibition of neuroendocrine PC1/3 than mammalian Furin and fungal Kex2. BF1 presented a mixed inhibition mechanism for Kex2 and PC1, and competitive inhibition for Furin. BF4 has no good interaction with Kex2 and Furin since carboxypropyl groups results in steric hindrance to ligand-protein interactions. Carboxypropyl groups of BF4 promote steric hindrance with Kex2 and Furin, but effective in the affinity of PC1/3. BF4 was more efficient at inhibiting PCl/3 (IC50 = 1.13 µM and Ki = 0,59 µM, simple linear competitive mechanism of inhibition) than Kex2, Furin. Also, our results strongly suggested that BF4 also inhibits the endogenous cellular PC1/3 activity in Caco-2 cells, since PC1/3 inhibition by BF4 causes a large increase in IL-8 and IL-1ß secretion in Caco-2 cells. CONCLUSIONS: BF4 is a potent and selective inhibitor of PC1/3. GENERAL SIGNIFICANCE: BF4 is the best candidate for further clinical studies on inhibition of PC1/3.


Asunto(s)
Biflavonoides , Células CACO-2 , Furina , Humanos , Simulación del Acoplamiento Molecular
3.
Biophys Chem ; 235: 29-39, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29432900

RESUMEN

Kex2 is the prototype of a large family of eukaryotic subtilisin-related proprotein-processing proteases that cleave at sites containing pairs of basic residues. Here, we studied the effects of KCl on the individual rate constants of association, dissociation, acylation and deacylation and determined the thermodynamic parameters at each step of the Kex2 reaction. Potassium bound Kex2 with KD=20.3mM. The order in which potassium entered the reaction system modified the effect of activation or inhibition, which depended on the size of the substrate. A possible allosteric potassium binding site at the S6 subsite was involved in activation, and a distant site located between the catalytic domain and the P-domain was involved in inhibition. Potassium decreased the energetic barriers of almost all steps of catalysis. The acylation of Ac-PMYKR-AMC in the absence of potassium was the rate-limiting step. Therefore, for substrates containing a P1-Arg, the deacylation step is not necessarily the rate-limiting event, and other residues at the P' positions may participate in controlling the acylation and deacylation steps. Thus, it is reasonable to conclude that potassium is involved in the processing of the α-mating factor that promotes Ca2+ mobilization by activating a high-affinity Ca2+-influx system to increase the cytosolic [Ca2+], resulting in the activation of channels that are essential for the survival of Saccharomyces cerevisiae cells.


Asunto(s)
Potasio/farmacología , Proproteína Convertasas/antagonistas & inhibidores , Proproteína Convertasas/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica , Acilación , Calcio/metabolismo , Potasio/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA