Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 266: 104666, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35788411

RESUMEN

Mutations in WHRN lead to Usher syndrome type 2d or to non-syndromic hearing impairment. The WHRN-encoded gene product whirlin directly interacts with the intracellular regions of the other two Usher syndrome type 2-associated proteins, usherin and ADGRV1. In photoreceptor cells, this protein complex constitutes fibrous links between the periciliary membrane and the connecting cilium. However, the molecular mechanism(s) of retinal degeneration due to compromised formation and function of the USH2-associated protein complex remains elusive. To unravel this pathogenic mechanism, we isolated and characterized whirlin-associated protein complexes from zebrafish photoreceptor cells. We generated transgenic zebrafish that express Strep/FLAG-tagged Whrna, a zebrafish ortholog of human whirlin, under the control of a photoreceptor-specific promoter. Affinity purification of Strep/FLAG-tagged Whrna and associated proteins from adult transgenic zebrafish retinas followed by mass spectrometry identified 19 novel candidate associated proteins. Pull down experiments and dedicated yeast two-hybrid assays confirmed the association of Whrna with 7 of the co-purified proteins. Several of the co-purified proteins are part of the synaptic proteome, which indicates a role for whirlin in the photoreceptor synapse. Future studies will elucidate which of the newly identified protein-protein interactions contribute to the development of the retinal phenotype observed in USH2d patients. SIGNIFICANCE: Since protein-protein interactions identified using targeted in vitro studies do not always recapitulate interactions that are functionally relevant in vivo, we established a transgenic zebrafish line that stably expresses a Strep/FLAG-tagged ortholog of human whirlin (SF-Whrna) in photoreceptor cells. Affinity purification of in vivo-assembled SF-Whrna-associated protein complexes from retinal lysates followed by mass spectrometry, identified 19 novel candidate interaction partners, many of which are enriched in the synaptic proteome. Two human orthologs of the identified candidate interaction partners, FRMPD4 and Kir2.3, were validated as direct interaction partners of human whirlin using a yeast two-hybrid assay. The strong connection of whirlin with postsynaptic density proteins was not identified in previous in vitro protein-protein interaction assays, presumably due to the absence of a biologically relevant context. Isolation and identification of in vivo-assembled whirlin-associated protein complexes from the tissue of interest is therefore a powerful methodology to obtain novel insight into tissue specific protein-protein interactions and has the potential to improve significantly our understanding of the function of whirlin and the molecular pathogenesis underlying Usher syndrome type 2.


Asunto(s)
Síndromes de Usher , Adulto , Animales , Humanos , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Retina/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Pez Cebra/metabolismo
2.
Osteoporos Int ; 25(2): 567-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23903952

RESUMEN

UNLABELLED: We demonstrate that glucocorticoids induce an osteoporotic phenotype in regenerating scales of zebrafish. Exposure to prednisolone results in altered mineral content, enhanced matrix breakdown, and an osteoporotic gene-expression profile in osteoblasts and osteoclasts. This highlights that the zebrafish scale provides a powerful tool for preclinical osteoporosis research. INTRODUCTION: This study aims to evaluate whether glucocorticoid (prednisolone) treatment of zebrafish induces an osteoporotic phenotype in regenerating scales. Scales, a readily accessible dermal bone tissue, may provide a tool to study direct osteogenesis and its disturbance by glucocorticoids. METHODS: In adult zebrafish, treated with 25 µM prednisolone phosphate via the water, scales were removed and allowed to regenerate. During regeneration scale morphology and the molar calcium/phosphorus ratio in scales were assessed and osteoblast and osteoclast activities were monitored by time profiling of cell-specific genes; mineralization was visualized by Von Kossa staining, osteoclast activity by tartrate-resistant acid phosphatase histochemistry. RESULTS: Prednisolone (compared to controls) enhances osteoclast activity and matrix resorption and slows down the build up of the calcium/phosphorus molar ratio indicative of altered crystal maturation. Prednisolone treatment further impedes regeneration through a shift in the time profiles of osteoblast and osteoclast genes that commensurates with an osteoporosis-like imbalance in bone formation. CONCLUSIONS: A glucocorticoid-induced osteoporosis phenotype as seen in mammals was induced in regenerating scalar bone of zebrafish treated with prednisolone. An unsurpassed convenience and low cost then make the zebrafish scale a superior model for preclinical studies in osteoporosis research.


Asunto(s)
Modelos Animales de Enfermedad , Glucocorticoides/toxicidad , Osteoporosis/inducido químicamente , Prednisolona/análogos & derivados , Estructuras Animales/efectos de los fármacos , Estructuras Animales/fisiología , Animales , Densidad Ósea/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Osteoclastos/efectos de los fármacos , Osteoporosis/fisiopatología , Fenotipo , Prednisolona/toxicidad , Regeneración , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA