Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Adv Healthc Mater ; 13(1): e2302250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37775861

RESUMEN

Soft gelatin capsules (SGCs) are the most widely used pharmaceutical form after tablets. The active components, active pharmaceutical ingredients (APIs), or nutrients are dissolved, dispersed, or suspended in a liquid or semisolid fill, which is covered with a gelatin shell. Several factors can modify the properties of the gelatin shell and subsequently affect their operative handling during manufacturing process and the stability of the soft gelatin capsules. Three elements appear to be crucial: the shell formulation (type and content of the different components such as gelatins-source, extraction method-plasticizers, or additives); the manufacture and storage conditions (temperature, humidity, light) as well as the interactions between fill-shell formulas. Mechanical and thermal analysis arise as straightforward but highly useful tools to monitor the properties of the gelatin shell. This review provides an updated overview on the shell formulation and design. Additionally, it presents the uses of mechanical and thermal techniques to characterize and evaluate the impact of different parameters on the gelatin behavior over the production and stability of these pharmaceutical forms. This will help to detect changes that are yet not visible by visual inspection ensuring a suitable finished product over its shelf-life.


Asunto(s)
Alimentos , Gelatina , Cápsulas , Temperatura
2.
Int J Biol Macromol ; 237: 124239, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996956

RESUMEN

Drug resistance has become a global problem, prompting the entire scientific world to seek alternative methods of dealing with resistant pathogens. Among the many alternatives to antibiotics, two appear to be the most promising: membrane permeabilizers and enzymes that destroy bacterial cell walls. Therefore, in this study, we provide insight into the mechanism of lysozyme transport strategies using two types of carbosilane dendronized silver nanoparticles (DendAgNPs), non-polyethylene glycol (PEG)-modified (DendAgNPs) and PEGylated (PEG-DendAgNPs), for outer membrane permeabilization and peptidoglycan degradation. Remarkably, studies have shown that DendAgNPs can build up on the surface of a bacterial cell, destroying the outer membrane, and thereby allowing lysozymes to penetrate inside the bacteria and destroy the cell wall. PEG-DendAgNPs, on the other hand, have a completely different mechanism of action. PEG chains containing a complex lysozyme resulted in bacterial aggregation and an increase in the local enzyme concentration near the bacterial membrane, thereby inhibiting bacterial growth. This is due to the accumulation of the enzyme in one place on the surface of the bacteria and penetration into it through slight damage of the membrane due to interactions of NPs with the membrane. The results of this study will help propel more effective antimicrobial protein nanocarriers.


Asunto(s)
Nanopartículas del Metal , Muramidasa , Muramidasa/metabolismo , Peptidoglicano , Plata , Antibacterianos/farmacología , Bacterias/metabolismo , Polietilenglicoles
3.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555742

RESUMEN

Enzyme immobilization is a powerful strategy for enzyme stabilization and recyclability. Materials covered with multipoint molecules are very attractive for this goal, since the number of active moieties to attach the enzyme increases with respect to monofunctional linkers. This work evaluates different dendrimers supported on silica to immobilize a protease enzyme, Alcalase. Five different dendrimers were employed: two carbosilane (CBS) dendrimers of different generations (SiO2-G0Si-NH2 and SiO2-G1Si-NH2), a CBS dendrimer with a polyphenoxo core (SiO2-G1O3-NH2), and two commercial polyamidoamine (PAMAM) dendrimers of different generations (SiO2-G0PAMAM-NH2 and SiO2-G1PAMAM-NH2). The results were compared with a silica support modified with a monofunctional molecule (2-aminoethanethiol). The effect of the dendrimer generation, the immobilization conditions (immobilization time, Alcalase/SiO2 ratio, and presence of Ca2+ ions), and the digestion conditions (temperature, time, amount of support, and stirring speed) on Alcalase activity has been evaluated. Enzyme immobilization and its activity were highly affected by the kind of dendrimer and its generation, observing the most favorable behavior with SiO2-G0PAMAM-NH2. The enzyme immobilized on this support was used in two consecutive digestions and, unlike CBS supports, it did not retain peptides released in the digestion.


Asunto(s)
Dendrímeros , Dendrímeros/química , Dióxido de Silicio/química , Enzimas Inmovilizadas/química
4.
Colloids Surf B Biointerfaces ; 217: 112652, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35772353

RESUMEN

Biomedical applications of gold nanoparticles (AuNPs) may be limited by their toxicological effects. Although surface-modified AuNPs can induce apoptosis, less is known about whether they can induce other types of cell death. Pyroptosis, an inflammatory type of programmed cell death, can be induced in immune cells, especially macrophages, by bacterial endotoxins. Therefore, in this study, dendronized AuNPs were combined with bacterial lipopolysaccharides (LPSs) as the main stimulators of pro-inflammatory responses to test the induction of pyroptosis in THP-1 myeloid cell line. These AuNPs induced caspase-1 activity (3-4 times more compared to control) and enhanced the release of interleukin (IL)-18 and IL-1ß without inducing gasdermin D cleavage and related pore formation. The production of pro-inflammatory cytokines occurred mainly visible during LPS treatment, although their secretion was observed only after administration of dendronized AuNPs (release of IL-1ß to supernatant up to 80 pg/mL). These findings suggest that dendronized AuNPs can induce pyroptosis-like inflammatory mechanisms and that these mechanisms are enhanced in the presence of bacterial LPS. The intensity of this effect was dependent on AuNP surface modification. These results shed new light on the cytotoxicity of metal NPs, including immune responses, indicating that surface modifications play crucial roles in their nanotoxicological effects.


Asunto(s)
Lipopolisacáridos , Nanopartículas del Metal , Citocinas/metabolismo , Oro/metabolismo , Oro/farmacología , Interleucina-1beta , Lipopolisacáridos/farmacología , Monocitos , Piroptosis
5.
Biomater Adv ; 133: 112622, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35525744

RESUMEN

Bacteria elimination from water sources is key to obtain drinkable water. Hence, the design of systems with ability to interact with bacteria and remove them from water is an attractive proposal. A diversity of polycationic macromolecules has shown bactericide properties, due to interactions with bacteria membranes. In this work, we have grafted cationic carbosilane (CBS) dendrons and dendrimers on the surface of iron oxide magnetic nanoparticles (MNP), leading to NP (ca. 10 nm) that interact with bacteria by covering bacteria membrane. Application of an external magnetic field removes MNP from solution sweeping bacteria attached to them. The interaction of the MNP with Gram-positive S. aureus bacteria is more sensible to the size of dendritic system covering the MNP, whereas interaction with Gram-negative E. coli bacteria is more sensible to the density of cationic groups. Over 500 ppm of NPM, MNP covered with dendrons captured over 90% of both type of bacteria, whereas MNP covered with dendrimers were only able to capture S. aureus bacteria (over 90%) but not E. coli bacteria. Modified MNP were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Z potential and dynamic light scattering (DLS). Interaction with bacteria was analyzed by UV, TEM and scanning electron microscopy (SEM). Moreover, the possibility to recycle cationic dendronized MNP was explored.


Asunto(s)
Dendrímeros , Nanopartículas de Magnetita , Cationes , Dendrímeros/química , Escherichia coli , Nanopartículas de Magnetita/química , Silanos , Staphylococcus aureus , Agua
6.
RSC Adv ; 12(17): 10280-10288, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35424993

RESUMEN

Reactive oxygen species (ROS) play a critical role in different human pathophysiological processes. ROS, together with nitrogen reactive species, generated as by-products of cellular metabolism or external factors, affects intracellular redox homeostasis. Redox-active groups found in proteins and other compounds such as polyphenols are involved in maintaining intracellular redox homeostasis. In this work, a new family of heterofunctional first-generation carbosilane dendrons functionalised with different polyphenols at the focal point and dimethylammonium groups at the periphery has been obtained through two synthetic strategies: reductive amination and straightforward amidation reaction. Their antioxidant activity has been evaluated through two spectrophotometric methods: ferric reducing antioxidant power (FRAP) assay and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay to establish a correlation between the number of hydroxyl groups and the antioxidant activity.

7.
J Inorg Biochem ; 223: 111540, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273717

RESUMEN

With the purpose of obtaining a new dendritic system against cancer, this paper is focused on the synthesis of spherical carbosilane metallodendrimers of different generations holding Ru(II) N-heterocyclic carbene (NHC) on the periphery from the imidazolium precursors. Both imidazolium salt dendrimers and their metallodendrimers counterparts showed promising anticancer activity, similar to cisplatin, mainly at high generations. In addition, both families of second and third generations were able to form dendriplexes with anticancer small interfering RNA (siRNA), protecting the cargo against RNAse and being able to internalize it in HEPG2 (human liver cancer) tumour cells. The characterization and effectiveness of the dendriplexes were evaluated by various analytical techniques such as zeta potential, electrophoresis and circular dichroism, the stability of the system and the protective nature of the dendrimer estimated using RNAse and the internalization of dendriplexes by confocal microscopy. The major advantage observed with the ruthenium metallodendrimers with respect to the imidazolium salts precursors was in cellular uptake, where the internalization of Mcl-1-FITC siRNA (myeloid cell leukaemia-1 fluorescein labelled siRNA) proceeded more efficiently. Therefore, we propose here that both imidazolium and Ru metallodendrimers are interesting candidates in cancer due to their double action, as anticancer per se and as carrier for anticancer siRNA, providing in this way a combined action.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Dendrímeros/farmacología , Portadores de Fármacos/farmacología , Compuestos Organometálicos/farmacología , ARN Interferente Pequeño/farmacología , Antineoplásicos/síntesis química , Complejos de Coordinación/síntesis química , Dendrímeros/síntesis química , Portadores de Fármacos/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Imidazoles/síntesis química , Imidazoles/farmacología , Compuestos Organometálicos/síntesis química , Rutenio/química
8.
Antibiotics (Basel) ; 10(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067558

RESUMEN

Biofilm formation is a critical health concern, involved in most human bacterial infections. Combatting this mechanism, which increases resistance to traditional antibiotics and host immune defences, requires novel therapeutic approaches. The remarkable biocide activity and the monodispersity of carbosilane metallodendrimers make them excellent platforms to evaluate the impact of different structural parameters on the biological activity. In this work, we explore the influence of iminopyridine ring substituents on the antibacterial activity against planktonic and biofilm Staphylococcus aureus. New families of first-generation Ru(II) and Cu(II) metallodendrimers were synthesised and analysed, in comparison to the non-substituted counterparts. The results showed that the presence of methyl or methoxy groups in meta position to the imine bond decreased the overall positive charge on the metal ion and, subsequently, the activity against planktonic bacteria. However, it seemed a relevant parameter to consider for the prevention of biofilm formation, if they contribute to increasing the overall lipophilicity. An optimum balance of the charge and lipophilicity of the metallodrug, accomplished through structural design, will provide effective biocide agents against bacteria biofilms.

9.
J Biotechnol ; 331: 48-52, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33727080

RESUMEN

The interaction of nanoparticles (NP) with proteins (the so-called 'protein corona') is a huge challenge in attempting to apply them in personalized nanomedicine. We have analyzed the interaction between A) two 'soft' NPs (a cationic phosphorus dendrimer of generation 3; a cationic phosphorus amphiphilic dendron of generation 2), and B) one 'hard' nanoparticle (silver NP covered with cationic carbosilane dendritic moieties); and membrane-bound protein phospholipase A2 from bovine pancreas. The hard and soft NPs have differences in the nature of their interactions with phospholipase A2. This enzyme surrounds hard AgNP, whereas dendrimer and amphiphilic dendron form aggregates/micelles with phospholipase A2. There is a difference in action of phospholipase A2 bound to the core of dendrimer, and of micelles formed from non-covalent interactions between the amphiphilic dendron. These data are important in understanding the nature of interaction between different kinds of nanoparticles and proteins.


Asunto(s)
Dendrímeros , Nanopartículas del Metal , Nanopartículas , Animales , Bovinos , Micelas , Fosfolipasas A2 , Plata
10.
Eur J Med Chem ; 215: 113292, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631696

RESUMEN

Iminopyridine-decorated carbosilane metallodendrimers have recently emerged as a promising strategy in the treatment of cancer diseases. Their unique features such as the nanometric size, the multivalent nature and the structural perfection offer an extraordinary platform to explore structure-to-property relationships. Herein, we showcase the outstanding impact on the antitumor activity of a parameter not explored before: the iminopyridine substituents in meta position. New Cu(II) carbosilane metallodendrimers, bearing methyl or methoxy substituents in the pyridine ring, were synthesized and thoroughly characterized. Electron Paramagnetic Resonance (EPR) was exploited to unveil the properties of the metallodendrimers. This study confirmed the presence of different coordination modes of the Cu(II) ion (Cu-N2O2, Cu-N4 and Cu-O4), whose ratios were determined by the structural features of the dendritic molecules. These metallodendrimers exhibited IC50 values in the low micromolar range (<6 µM) in tumor cell lines such as HeLa and MCF-7. The subsequent in vitro assays on both healthy (PBMC) and tumor (U937) myeloid cells revealed two key facts which improved the cytotoxicity and selectivity of the metallodrug: First, maximizing the Cu-N2O2 coordination mode; second, adequately selecting the pair ring-substituent/metal-counterion. The most promising candidates, G1(-CH3)Cl (8) and G1(-OCH3)NO3(17), exhibited a substantial increase in the antitumor activity in U937 tumor cells, compared to the non-substituted counterparts, probably through two different ROS-production pathways.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Dendrímeros/farmacología , Piridinas/farmacología , Silanos/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Cobre/química , Dendrímeros/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Piridinas/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Silanos/síntesis química
11.
Int J Biol Macromol ; 165(Pt B): 2338-2348, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33132126

RESUMEN

This work evaluates different dendrimer-silica supports for the immobilization of enzymes by multipoint covalent binding. Thermolysin was immobilized on two dendrimers (PAMAM and carbosilane) with two different generations (zero (G0) and first (G1)). Results were compared with a control, a silica support functionalized with a monofunctional molecule. Dendrimers increased the number of available sites to bind the enzyme. Despite the enzyme was immobilized on all supports, G0 dendrimers immobilized a 30% more enzyme than G1. Thermolysin immobilized on G0 dendrimer supports showed the highest activity and could be employed in three consecutive hydrolysis cycles. Optimal immobilization time was 1 h while optimal protein loading was 25 mg enzyme/100 mg support. Enzyme activity was promoted when using 5 mg of immobilized enzyme at 750 rpm, 60 °C, and 2 h of hydrolysis. Under these conditions, the activity of thermolysin increased up to the 78% of the free enzyme activity. Kinetics of the hydrolysis reaction using the immobilized thermolysin was also studied and compared with the obtained using the free thermolysin. The addition of ZnCl2 and NaCl during the immobilization procedure increased thermolysin activity in the second (22% more) and in the third (14% more) hydrolysis clycles.


Asunto(s)
Dendrímeros/química , Enzimas Inmovilizadas/metabolismo , Geobacillus/enzimología , Proteínas/metabolismo , Dióxido de Silicio/química , Termolisina/metabolismo , Aminoácidos/análisis , Animales , Bovinos , Estabilidad de Enzimas , Estudios de Factibilidad , Hidrólisis , Iones , Cinética , Metales/farmacología , Péptidos/análisis , Albúmina Sérica Bovina/metabolismo
12.
Pharmaceutics ; 12(10)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066639

RESUMEN

Spherical dendrimers and dendrons containing silver(I) N-heterocyclic carbenes (Ag(I)-NHC) and additionally bow-tie metal-free dendritic systems were synthesized in a simple and straightforward synthetic procedure and subsequently characterized. The antibacterial activity was evaluated, and in parallel, a comparative study with the cationic analogue precursors was performed to explore the effect of silver ions in the dendritic structure. Other parameters, such as topology, generation, and hydrophobicity, of the imidazole substituents were also studied. All these dendritic systems presented antibacterial activity against three different bacterial strains, two Gram-positive (Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Escherichia coli). Several assays were conducted to elucidate their mechanism of action against Bacillus subtilis, by using bacterial biosensors or specific probes and fluorescent proteins sensitive to changes in the cell membrane potential. These studies are specially focused on the role of the polyvalence of our systems containing silver atoms, which may provoke interesting effects in the mode of action.

13.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629868

RESUMEN

Gene therapy is a promising approach in cancer treatment; however, current methods have a number of limitations mainly due to the difficulty in delivering therapeutic nucleic acids to their sites of action. The application of non-viral carriers based on nanomaterials aims at protecting genetic material from degradation and enabling its effective intracellular transport. We proposed the use of silver nanoparticles (AgNPs) surface-modified with carbosilane dendrons as carriers of anticancer siRNA (siBcl-xl). Using gel electrophoresis, zeta potential and hydrodynamic diameter measurements, as well as transmission electron microscopy, we characterized AgNP:siRNA complexes and demonstrated the stability of nucleic acid in complexes in the presence of RNase. Hemolytic properties of free silver nanoparticles and complexes, their effect on lymphocyte proliferation and cytotoxic activity on HeLa cells were also examined. Confocal microscopy proved the effective cellular uptake of complexes, indicating the possible use of this type of silver nanoparticles as carriers of genetic material in gene therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas del Metal/administración & dosificación , Silanos/química , Dendrímeros/administración & dosificación , Dendrímeros/química , Terapia Genética/métodos , Células HeLa , Hemólisis , Humanos , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Ácidos Nucleicos/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Plata/química
14.
Mol Pharm ; 17(7): 2691-2702, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32484691

RESUMEN

Copper(II) carbosilane metallodendrimers are promising nanosized anticancer metallodrugs. The precise control on their design enables an accurate structure-to-activity study. We hypothesized that different structural features, such as the dendrimer generation and metal counterion, modulate the interaction with tumor cells, and subsequently, the effectivity and selectivity of the therapy. A computer-aided analysis of the electron paramagnetic resonance (EPR) spectra allowed us to obtain dynamical and structural details on the interactions over time between the dendrimers and the cells, the myeloid U937 tumor cells and peripheral blood mononuclear cells (PBMC). The intracellular fate of the metallodendrimers was studied through a complete in vitro evaluation, including cytotoxicity, cytostaticity, and sublethal effects regarding mitochondria function, lysosomal compartments, and autophagic organelle involvement. EPR results confirmed a higher membrane stabilization for chloride dendrimers and low generation complexes, which ultimately influence the metallodrug uptake and intracellular fate. The in vitro evaluation revealed that Cu(II) metallodendrimers are cytostatic and moderate cytotoxic agents for U937 tumor cells, inducing death processes through the mitochondria-lysosome axis as well as autophagic vacuole formation, while barely affecting healthy monocytes. The study provided valuable insight into the mechanism of action of these nanosized metallodrugs and relevant structural parameters affecting the activity.


Asunto(s)
Cobre/química , Citotoxinas/administración & dosificación , Dendrímeros/administración & dosificación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Leucocitos Mononucleares/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Silanos/química , Autofagia , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/toxicidad , Dendrímeros/química , Dendrímeros/metabolismo , Dendrímeros/toxicidad , Humanos , Lisosomas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología
15.
Eur J Med Chem ; 199: 112414, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32438200

RESUMEN

In searching for efficient and selective antitumour drugs, a new family of carbosilane metallodendrimers functionalized with [Ru(η5-C5H5)(PTA)Cl] (PTA = 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1] decane) is reported. Experiments of the biophysical characterization showed an ability to interact with biological membranes, as well as with proteins (e.g. human serum albumin) without affecting their usual biological activity. These metallodendrimers possessed potent and selective anticancer activity in vitro in a panel of tumour cell lines. Importantly, the first generation metallodendrimer, bearing 4 Ru(II) complexes, was remarkably active towards resistant prostate cancer cells, inhibiting both cell proliferation and metastasis to bone tissues. Such promising antitumour activity can be further improved when given with docetaxel, with in vitro cytotoxicity being in the nanomolar range. Furthermore, its intravenous administration to an advanced prostate cancer mice model inhibited tumour growth up to 25% and 45% when given 10 mg/kg/week and 7.5 mg/kg/4-5 days, respectively.


Asunto(s)
Antineoplásicos/farmacología , Ciclopentanos/farmacología , Dendrímeros/farmacología , Compuestos Organometálicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Rutenio/farmacología , Silanos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclopentanos/química , Dendrímeros/síntesis química , Dendrímeros/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Rutenio/química , Silanos/química , Relación Estructura-Actividad
16.
Mater Sci Eng C Mater Biol Appl ; 109: 110526, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32228896

RESUMEN

Materials modified with ammonium groups on the surface have shown antibacterial activity. In this paper, alkyl chains, carbosilane (CBS) dendrimers and dendrons and poly(amidoamine) (PAMAM) dendrimers containing amine and ammonium groups have been grafted to silica surface and the influence of molecule structure on the stability and on antibacterial activity have been evaluated. These materials have been characterized by thermogravimetric analysis (TGA), zeta (Z) potential, scanning electron microscopy (SEM), infrared spectroscopy (IR) and nuclear magnetic resonance (13C CP MAS NMR). The degree of silica functionalization depends on type of outer groups, amine or ammonium, type and core of dendrimer, and length of chains. The Z potential measurements of these materials in water suspensions were used to test their stability in this medium. These measurements showed, for some of the modified silicas, the diminishing of Z potential from positive values toward zero, probably due to interaction of the functional groups with the silica surface. This variation was also dependent on ligand structure and peripheral functions. Finally, studies of inhibition of bacteria growth stand out again the relevance of ligand structure and number of functional groups on silica surface. The most active systems were those with more surface covered, those with cationic groups further away from silica surface and higher dendritic generation.


Asunto(s)
Compuestos de Amonio/química , Antibacterianos/química , Dendrímeros/química , Dióxido de Silicio/química
17.
Chemistry ; 26(34): 7609-7621, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32259327

RESUMEN

The most common denominator of many of the neurodegenerative diseases is badly folded protein accumulation, which results in the formation of insoluble protein deposits located in different parts of the organism, causing cell death and tissue degeneration. Dendritic systems have turned out to be a promising new therapeutic approach for the treatment of these diseases due to their ability to modulate the folding of these proteins. With this perspective, and focused on type 2 diabetes (T2D), characterized by the presence of deposits containing the amyloidogenic islet amyloid polypeptide (IAPP), we demonstrate how different topologies of cationic carbosilane dendrimers inhibit the formation of insoluble protein deposits in pancreatic islets isolated from transgenic Tg-hIAPP mice. Also, the results obtained by the modification of dendritic carbosilane wedges with the chemical chaperone 4-phenylbutyric acid (4-PBA) at the focal point confirmed their potential as anti-amyloid agents with a concentration efficiency in their therapeutic action five orders of magnitude lower than that observed for free 4-PBA. Computational studies, which determined the main interaction between IAPP and dendrimers at the atomic level, support the experimental work.


Asunto(s)
Amiloidosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/química , Fenilbutiratos/química , Silanos/química , Animales , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos
18.
Int J Pharm ; 573: 118867, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31765788

RESUMEN

Heterofunctionalized gold nanoparticles (AuNPs) were obtained in a one pot reaction of gold precursor with cationic carbosilane dendrons (first to third generations, 1-3G) and (polyethylene)glycol (PEG) ligands in the presence of a reducing agent. The final dendron/PEG proportion on AuNPs depends on the initial dendron/PEG ratio (3/1, 1/1, 1/3) and dendron generation. AuNPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet spectroscopy (UV-VIS), thermogravimetric analysis (TGA), nuclear magnetic resonance (1H NMR) and zeta potential (ZP). Several assays have been carried out to determine the relevance of PEG/dendron ratio and dendron generation in the biomedical properties of PEGylated AuNPs and the results have been compared with those obtained for non-PEGylated AuNPs. Finally, analyses of PEG recognition by anti-PEG antibodies were carried out. In general, haemolysis, platelet aggregation and toxicity were reduced after PEGylation of AuNPs, the effect being dependent on dendron generation and dendron/PEG ratio. Dendron generation determines the exposure of PEG ligand and the interaction of this ligand with AuNPs environment. On the other hand, increasing PEG proportion diminishes toxicity but also favors interaction with antibodies.


Asunto(s)
Dendrímeros/toxicidad , Portadores de Fármacos/toxicidad , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Silanos/toxicidad , Cationes/química , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética/métodos , Química Farmacéutica/métodos , Dendrímeros/química , Portadores de Fármacos/química , Dispersión Dinámica de Luz , Eritrocitos/efectos de los fármacos , Oro/química , Células HeLa , Humanos , Leucocitos Mononucleares , Espectroscopía de Resonancia Magnética , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/química , Silanos/química , Pruebas de Toxicidad
19.
Front Microbiol ; 10: 2771, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866964

RESUMEN

Antimicrobial proteins, like lysozymes produced by animals or bacteriophage lysins, enable the degradation of bacterial peptidoglycan (PG) and, consequently, lead to bacterial cell lysis. However, the activity of those enzymes is not satisfactory against gram-negative bacteria because of the presence of an outer membrane (OM) barrier. Lytic enzymes can therefore be combined with membrane-disrupting agents, such as dendritic silver nanoparticles. Nevertheless, a lipopolysaccharide (LPS), especially the smooth type, could be the main hindrance for highly charged nanoparticles to get direct access to the bacterial OM and to help lytic enzymes to reach their target PG. Herein, we have investigated the interactions of PEGylated carbosilane dendritic nanoparticles with P. aeruginosa 010 LPS in the presence of lysozymes and KP27 endolysin to find out the main aspects of the OM destabilization process. Our results showed that PEGylated dendronized AgNPs overcame the LPS barrier and enhanced the antibacterial effect of endolysin more efficiently than unPEGylated nanoparticles.

20.
Biomolecules ; 9(10)2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569790

RESUMEN

Dendrimers exhibit unique interactions with cell membranes, arising from their nanometric size and high surface area. To a great extent, these interactions define their biological activity and can be reported in situ by spin-labelling techniques. Schiff-base carbosilane ruthenium (II) metallodendrimers are promising antitumor agents with a mechanism of action yet to explore. In order to study their in situ interactions with model cell membranes occurring at a molecular level, namely cetyltrimethylammonium bromide micelles (CTAB) and lecithin liposomes (LEC), electron paramagnetic resonance (EPR) was selected. Both a spin probe, 4-(N,N-dimethyl-N-dodecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl bromide (CAT12), able to enter the model membranes, and a spin label, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) covalently attached at newly synthesized heterofunctional dendrimers, were used to provide complementary information on the dendrimer-membrane interactions. The computer-aided EPR analysis demonstrated a good agreement between the results obtained for the spin probe and spin label experiments. Both points of view suggested the partial insertion of the dendrimer surface groups into the surfactant aggregates, mainly CTAB micelles, and the occurrence of both polar and hydrophobic interactions, while dendrimer-LEC interactions involved more polar interactions between surface groups. We found out that subtle changes in the dendrimer structure greatly modified their interacting abilities and, subsequently, their anticancer activity.


Asunto(s)
Membrana Celular/química , Dendrímeros/química , Compuestos Organometálicos/química , Rutenio/química , Silanos/química , Marcadores de Spin , Cetrimonio/química , Espectroscopía de Resonancia por Spin del Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Lecitinas/química , Liposomas/química , Micelas , Modelos Moleculares , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA